Paschke dilations

Abraham Westerbaan Bas Westerbaan

 abrabas@westerbaan.nameRadboud Universiteit Nijmegen

$$
\text { July 4, } 2016
$$

Stinespring dilation

$\mathscr{A} \xrightarrow[\text { normal Inear completely positive contrative }]{\varphi} B(\mathscr{H})$
\mathscr{A} von Neumann algebra, \mathscr{H} Hilbert space

Stinespring dilation

$$
\mathscr{A} \longrightarrow \quad \varphi \text { process } B(\mathscr{H})
$$

\mathscr{A} von Neumann algebra, \mathscr{H} Hilbert space

Stinespring dilation

\mathscr{K} Hilbert space, $V: \mathscr{H} \rightarrow \mathscr{K}$ bounded linear

Minimal Stinespring dilation

minimal $\equiv(\operatorname{span} \varrho(\mathscr{A}) \vee \mathscr{H}$ dense in $\mathscr{K})$

Minimal Stinespring dilation

Yes!

1. Stinespring has a universal property.

1. Stinespring has a universal property.
2. Paschke's 1973 factorization for arbitrary processes $\varphi: \mathscr{A} \rightarrow \mathscr{B}$ also has this universal property.

Yes!

1. Stinespring has a universal property.
2. Paschke's 1973 factorization for arbitrary processes $\varphi: \mathscr{A} \rightarrow \mathscr{B}$ also has this universal property.
5.3 Corollary. Let A and B be as above, and $\phi: A-B$ a completely positive map such that $\phi(1)=1$. There is a B^{*}-algebra \mathbb{C} containing B, a projection $p \in \mathbb{Q}$ such that $B=p \mathbb{Q} p$, and a *-homomorphism $\pi: A \rightarrow \mathbb{Q}$ such that $\phi(a)=p \pi(a) p \quad \forall a \in A$.
inner product modules over b*-algebras - American Mathemat... www.ams.org/tran/1973-182-00/.../S0002-9947-1973-0355613-0.pdf v by WL Paschke - 1973 - Cited by 523 - Related articles

Yes!

1. Stinespring has a universal property.
2. Paschke's 1973 factorization for arbitrary processes $\varphi: \mathscr{A} \rightarrow \mathscr{B}$ also has this universal property.
5.3 Corollary. Let A and B be as above, and $\phi: A-B$ a completely positive map such that $\phi(1)=1$. There is a B^{*}-algebra Q containing B, a projection $p \in \mathbb{Q}$ such that $B=p \mathbb{Q} p$, and $a{ }^{*}$-homomorphism $\pi: A \rightarrow \mathbb{Q}$ such that $\phi(a)=p \pi(a) p \quad \forall a \in A$.
inner product modules over b*-algebras - American Mathemat... www.ams.org/tran/1973-182-00/.../S0002-9947-1973-0355613-0.pdf v by WL Paschke - 1973 - Cited by 523 - Related articles
3. Thus (surprisingly): Paschke is a generalization of Stinespring.

Chris Heunen's contribution

$(\varrho, \mathscr{K}, V)$ minimal Stinespring

Chris Heunen's contribution

Chris Heunen's contribution

\exists !isometry $S: \mathscr{K} \rightarrow \mathscr{K}^{\prime}$ with $S V=W$

Chris Heunen's contribution

llisometry $S: \mathscr{K} \rightarrow \mathscr{K}^{\prime}$ with $S V=W$ (WW filled a gap in the proof.)

Universal property Stinespring

$(\varrho, \mathscr{K}, V)$ minimal Stinespring dilation of φ

Universal property Stinespring

Universal property Stinespring

Paschke dilation

$$
\mathscr{A} \longrightarrow \mathscr{C} \text { process } \mathscr{B}
$$

Paschke dilation

Paschke dilation

Paschke dilation

Remainder talk

1. Sketch construction \mathscr{P}
2. Examples of dilations
3. Pure maps
4. Future research

Sketch construction \mathscr{P}

On algebraic tensor $\mathscr{A} \odot \mathscr{B}$, define $[a \otimes b, \alpha \otimes \beta]_{\varphi}:=b^{*} \varphi\left(a^{*} \alpha\right) \beta$.

Sketch construction \mathscr{P}

On algebraic tensor $\mathscr{A} \odot \mathscr{B}$, define $[a \otimes b, \alpha \otimes \beta]_{\varphi}:=b^{*} \varphi\left(a^{*} \alpha\right) \beta$.
$N_{\varphi}:=\{x ; x \in \mathscr{A} \otimes \mathscr{B} ;[x, x]=0\}$

Sketch construction \mathscr{P}

On algebraic tensor $\mathscr{A} \odot \mathscr{B}$, define $[a \otimes b, \alpha \otimes \beta]_{\varphi}:=b^{*} \varphi\left(a^{*} \alpha\right) \beta$.
$N_{\varphi}:=\{x ; x \in \mathscr{A} \otimes \mathscr{B} ;[x, x]=0\}$
$X_{0}:=\mathscr{A} \odot \mathscr{B} / N_{\varphi}$

Sketch construction \mathscr{P}

On algebraic tensor $\mathscr{A} \odot \mathscr{B}$, define $[a \otimes b, \alpha \otimes \beta]_{\varphi}:=b^{*} \varphi\left(a^{*} \alpha\right) \beta$.
$N_{\varphi}:=\{x ; x \in \mathscr{A} \otimes \mathscr{B} ;[x, x]=0\}$
$X_{0}:=\mathscr{A} \odot \mathscr{B} / N_{\varphi}$ and $X:=\overline{X_{0}}$

Sketch construction \mathscr{P}

On algebraic tensor $\mathscr{A} \odot \mathscr{B}$, define $[a \otimes b, \alpha \otimes \beta]_{\varphi}:=b^{*} \varphi\left(a^{*} \alpha\right) \beta$.
$N_{\varphi}:=\{x ; x \in \mathscr{A} \otimes \mathscr{B} ;[x, x]=0\}$
$X_{0}:=\mathscr{A} \odot \mathscr{B} / N_{\varphi}$ and $X:=\overline{X_{0}}$
X is Hilbert C^{*}-module over \mathscr{B}

Sketch construction \mathscr{P}

On algebraic tensor $\mathscr{A} \odot \mathscr{B}$, define $[a \otimes b, \alpha \otimes \beta]_{\varphi}:=b^{*} \varphi\left(a^{*} \alpha\right) \beta$.
$N_{\varphi}:=\{x ; x \in \mathscr{A} \otimes \mathscr{B} ;[x, x]=0\}$
$X_{0}:=\mathscr{A} \odot \mathscr{B} / N_{\varphi}$ and $X:=\overline{X_{0}}$
X is Hilbert C^{*}-module over \mathscr{B}
$\mathscr{A} \otimes_{\varphi} \mathscr{B}:=X_{0}^{\prime}$ self-dual Hilbert C*-module

Sketch construction \mathscr{P}

On algebraic tensor $\mathscr{A} \odot \mathscr{B}$, define $[a \otimes b, \alpha \otimes \beta]_{\varphi}:=b^{*} \varphi\left(a^{*} \alpha\right) \beta$.
$N_{\varphi}:=\{x ; x \in \mathscr{A} \otimes \mathscr{B} ;[x, x]=0\}$
$X_{0}:=\mathscr{A} \odot \mathscr{B} / N_{\varphi}$ and $X:=\overline{X_{0}}$
X is Hilbert C^{*}-module over \mathscr{B}
$\mathscr{A} \otimes_{\varphi} \mathscr{B}:=X_{0}^{\prime}$ self-dual Hilbert C*-module
$\mathscr{P}:=B^{a}\left(\mathscr{A} \otimes_{\varphi} \mathscr{B}\right)$ bounded modulemaps

Sketch construction \mathscr{P}

On algebraic tensor $\mathscr{A} \odot \mathscr{B}$, define $[a \otimes b, \alpha \otimes \beta]_{\varphi}:=b^{*} \varphi\left(a^{*} \alpha\right) \beta$.
$N_{\varphi}:=\{x ; x \in \mathscr{A} \otimes \mathscr{B} ;[x, x]=0\}$
$X_{0}:=\mathscr{A} \odot \mathscr{B} / N_{\varphi}$ and $X:=\overline{X_{0}}$
X is Hilbert C^{*}-module over \mathscr{B}
$\mathscr{A} \otimes_{\varphi} \mathscr{B}:=X_{0}^{\prime}$ self-dual Hilbert C*-module $\mathscr{P}:=B^{a}\left(\mathscr{A} \otimes_{\varphi} \mathscr{B}\right)$ bounded modulemaps $\varrho(\alpha) a \otimes b=(\alpha a) \otimes b$

Sketch construction \mathscr{P}

On algebraic tensor $\mathscr{A} \odot \mathscr{B}$, define
$[a \otimes b, \alpha \otimes \beta]_{\varphi}:=b^{*} \varphi\left(a^{*} \alpha\right) \beta$.
$N_{\varphi}:=\{x ; x \in \mathscr{A} \otimes \mathscr{B} ;[x, x]=0\}$
$X_{0}:=\mathscr{A} \odot \mathscr{B} / N_{\varphi}$ and $X:=\overline{X_{0}}$
X is Hilbert C^{*}-module over \mathscr{B}
$\mathscr{A} \otimes_{\varphi} \mathscr{B}:=X_{0}^{\prime}$ self-dual Hilbert C*-module $\mathscr{P}:=B^{a}\left(\mathscr{A} \otimes_{\varphi} \mathscr{B}\right)$ bounded modulemaps $\varrho(\alpha) a \otimes b=(\alpha a) \otimes b$ and $h(T)=\langle T 1 \otimes 1,1 \otimes 1\rangle_{\varphi}$

Examples $1 / 3$

- $\mathscr{A} \xrightarrow{\varrho} \mathscr{B} \xrightarrow{\text { id }} \mathscr{B}$ Paschke dilation of unital multiplicative process ϱ

Examples $1 / 3$

- $\mathscr{A} \xrightarrow{\varrho} \mathscr{B} \xrightarrow{\text { id }} \mathscr{B}$ Paschke dilation of unital multiplicative process ϱ
- $\mathscr{P} \xrightarrow{\mathrm{id}} \mathscr{P} \xrightarrow{h} \mathscr{B}$ Paschke dilation of any process h on RHS of a Paschke dilation.

Examples $1 / 3$

- $\mathscr{A} \xrightarrow{\varrho} \mathscr{B} \xrightarrow{\text { id }} \mathscr{B}$ Paschke dilation of unital multiplicative process ϱ
- $\mathscr{P} \xrightarrow{\text { id }} \mathscr{P} \xrightarrow{h} \mathscr{B}$ Paschke dilation of any process h on RHS of a Paschke dilation.
- $\mathscr{A} \xrightarrow{\varrho} \mathscr{P} \xrightarrow{h} \mathscr{B}$ is a Paschke dilation of a unital φ, then h is a corner.

Examples 1/3

- $\mathscr{A} \xrightarrow{\varrho} \mathscr{B} \xrightarrow{\text { id }} \mathscr{B}$ Paschke dilation of unital multiplicative process ϱ
- $\mathscr{P} \xrightarrow{\mathrm{id}} \mathscr{P} \xrightarrow{h} \mathscr{B}$ Paschke dilation of any process h on RHS of a Paschke dilation.
- $\mathscr{A} \xrightarrow{\varrho} \mathscr{P} \xrightarrow{h} \mathscr{B}$ is a Paschke dilation of a unital φ, then h is a corner.
(h corner if $h(x)=\vartheta(p x p)$ for some projection $p \in \mathscr{P}$ and isomorphism $\vartheta: p \mathscr{P} p \rightarrow \mathscr{B}$.)

Examples 2/3

- $\left\langle\varphi_{1}, \varphi_{2}\right\rangle: \mathscr{A} \rightarrow \mathscr{B}_{1} \oplus \mathscr{B}_{2}$ has P-dill.
$\mathscr{A} \xrightarrow{\left\langle\varphi_{1}, \varrho_{2}\right\rangle} \mathscr{P}_{1} \oplus \mathscr{P}_{2} \xrightarrow{h_{1} \oplus h_{2}} \mathscr{B}_{1} \oplus \mathscr{B}_{2}$, with $\mathscr{A} \xrightarrow{\varrho_{i}} \mathscr{P}_{i} \xrightarrow{h_{i}} \mathscr{B}_{i}$ Paschke dilation of φ_{i}.

Examples 2/3

- $\left\langle\varphi_{1}, \varphi_{2}\right\rangle: \mathscr{A} \rightarrow \mathscr{B}_{1} \oplus \mathscr{B}_{2}$ has P-dill. $\mathscr{A} \xrightarrow{\left\langle\varphi_{1}, \varrho_{2}\right\rangle} \mathscr{P}_{1} \oplus \mathscr{P}_{2} \xrightarrow{h_{1} \oplus h_{2}} \mathscr{B}_{1} \oplus \mathscr{B}_{2}$, with $\mathscr{A} \xrightarrow{\varrho_{i}} \mathscr{P}_{i} \xrightarrow{h_{i}} \mathscr{B}_{i}$ Paschke dilation of φ_{i}.
- Thus in the finite dimensional case, the Paschke dilation is componentwise minimal Stinespring.

Examples 3/3

$-\mathscr{A} \xrightarrow{C_{p}(\cdot) C_{p}} C_{p} \mathscr{A} C_{p} \xrightarrow{p(\cdot) p} p \mathscr{A} p$ is the Paschke dilation of the corner $h: \mathscr{A} \rightarrow p \mathscr{A} p, x \mapsto p x p$

Remainder talk

1. Sketch construction \mathscr{P}
2. Examples of dilations
3. Pure maps
4. Future research

Pure maps

When call a process $\varphi: \mathscr{A} \rightarrow \mathscr{B}$ pure?

Pure maps

When call a process $\varphi: \mathscr{A} \rightarrow \mathscr{B}$ pure?

- Extreme is not ok: unital multiplicative processes are extreme (among the unital processes)

Pure maps

When call a process $\varphi: \mathscr{A} \rightarrow \mathscr{B}$ pure?

- Extreme is not ok: unital multiplicative processes are extreme (among the unital processes)
- If $[0, \varphi]_{\mathrm{cp}}=[0,1] \varphi$? No: then id not pure.

Pure maps

When call a process $\varphi: \mathscr{A} \rightarrow \mathscr{B}$ pure?

- Extreme is not ok: unital multiplicative processes are extreme (among the unital processes)
- If $[0, \varphi]_{\mathrm{cp}}=[0,1] \varphi$? No: then id not pure.

Clearly $\operatorname{Ad}_{V}: B(\mathscr{H}) \rightarrow B(\mathscr{K})$ should be pure with $\operatorname{Ad}_{V}^{\dagger}=\operatorname{Ad}_{V^{*}}$

Our proposal

$$
\mathscr{A} \xrightarrow{\varphi \text { process }} \mathscr{B}
$$

Our proposal

Our proposal

p carrier projection of φ

Our proposal

φ pure $:=\varphi_{\measuredangle}$ isomorphism

Pure and Paschke

With $\mathscr{A} \xrightarrow{\varrho} \mathscr{P} \xrightarrow{h} \mathscr{B}$ Paschke dilation φ

Pure and Paschke

With $\mathscr{A} \xrightarrow{\varrho} \mathscr{P} \xrightarrow{h} \mathscr{B}$ Paschke dilation φ

- h is pure

Pure and Paschke

With $\mathscr{A} \xrightarrow{\varrho} \mathscr{P} \xrightarrow{h} \mathscr{B}$ Paschke dilation φ

- h is pure
- φ is pure if and only if ϱ surjection

Pure and Paschke

With $\mathscr{A} \xrightarrow{\varrho} \mathscr{P} \xrightarrow{h} \mathscr{B}$ Paschke dilation φ

- h is pure
- φ is pure if and only if ϱ surjection
- Pure processes are extreme among processes with the same value on 1

Pure and Paschke

With $\mathscr{A} \xrightarrow{\varrho} \mathscr{P} \xrightarrow{h} \mathscr{B}$ Paschke dilation φ

- h is pure
- φ is pure if and only if ϱ surjection
- Pure processes are extreme among processes with the same value on 1
- (To be published: there is a unique* dagger on pure maps.)

Future work

- Continuity as for Stinespring
(Kretschmann et al).

Future work

- Continuity as for Stinespring (Kretschmann et al).
- Universal property gives X and H gates, what else?

Future work

- Continuity as for Stinespring (Kretschmann et al).
- Universal property gives X and H gates, what else?
- ...?

Thanks!

Thanks!

Questions?

