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Abstract. State spaces in probabilistic and quantum computation are
convex sets, that is, Eilenberg–Moore algebras of the distribution monad.
This article studies some computationally relevant properties of convex
sets. We introduce the term effectus for a category with suitable coprod-
ucts (so that predicates, as arrows of the shape X → 1 + 1, form effect
modules, and states, arrows of the shape 1 → X, form convex sets). One
main result is that the category of cancellative convex sets is such an
effectus. A second result says that the state functor is a “map of effecti”.
We also define ‘normalisation of states’ and show how this property is
closed related to conditional probability. This is elaborated in an example
of probabilistic Bayesian inference.

1 Introduction

The defining property of a convex set X is its closure under convex combinations.
This means that for x, y ∈ X and λ ∈ [0, 1] the convex combination λx+(1−λ)y
is also in X. There are some subtle properties that these convex combinations
should satisfy, going back to Stone [Sto49]. Here we shall use a more abstract —
but equivalent — categorical approach and call an Eilenberg–Moore algebra of
the distribution monad D a convex set.

It is a basic fact that state spaces (i.e. sets of states) in probabilistic compu-
tation (both discrete and continuous) and in quantum computation are convex
sets. Any serious model of such forms of computation will thus involve convex
structures. It is within this line of research that the present paper contributes
by clarifying several issues in the (computational) theory of convex sets. On a
technical level the paper pinpoints (1) the relevance of a property of convex
sets called ‘cancellation’, and (2) a ‘normalisation’ condition that is crucial for
conditional probability and (Bayesian) inference.

These two points may seem strange and obscure. However, they play an
important role in an ongoing project [Jac14] to determine the appropriate cat-
egorical axiomatisation for probabilistic and quantum logic and computation.
Here we introduce the term ‘effectus’ for such a category. The main technical
results of the paper can then be summarised as: the category CConv of can-
cellative convex sets is an effectus, and: the state functor Stat : B → CConv
from an arbitrary effectus B to CConv is a map of effecti. We illustrate how
these results solidify the notion of effectus, and its associated state-and-effect



triangle. We further show that conditional probability and (Bayesian) inference
can be described both succinctly and generally via the idea of normalisation of
stages.

Convex structures play an important role in mathematics (esp. functional
analysis, see e.g. [AE80]), and in many application areas like economics. In the
context of the axiomatisation of quantum (and probability) theory they are used
systematically in for instance [Gud73] or [Fri09,BW11]. This paper fits in the
latter line of research. It continues and refines [Jac14], by concentrating on the
role of state spaces and their structure as convex sets.

The paper starts by describing background information on (discrete probabil-
ity) distributions and convex sets. Coproducts + of convex sets play an important
role in the sequel, and are analysed in some detail. Subsequently, Section 3 con-
centrates on a well-known property of convex sets, known as cancellation. We
recall how cancellation can be formulated in various ways, and show the equiv-
alence with a joint monicity property that occurs in earlier work on categorical
quantum axiomatisation [Jac14]. Section 4 introduces a categorical description
of the well-known phenomenon of normalisation in probability. Finally, the re-
sulting abstract description of conditional state in Section 6 is illustrated in a
concrete example in Bayesian inference, using probability distributions as states.

2 Preliminaries on distributions and convex sets

For an arbitrary set X we write D(X) for the set of formal finite convex combi-
nations of elements from X. These elements of D(X) will be represented in two
equivalent ways.

– As formal convex sums λ1 |x1〉 + · · · + λn |xn〉, for xi ∈ X and λi ∈ [0, 1]
with

∑
i λi = 1. We use the ‘ket’ notation |x〉 in such formal sums to prevent

confusion with elements x ∈ X.
– As functions ϕ : X → [0, 1] with finite support and

∑
x ϕ(x) = 1. The sup-

port of ϕ is the set {x ∈ X : ϕ(x) 6= 0 }.

Elements of D(X) are also called (discrete probability) distributions over X.
The mapping X 7→ D(X) can be made functorial: for f : X → Y we get a

function D(f) : D(X)→ D(Y ) which may be described in two equivalent ways:

D(f)(
∑
i λi |xi〉 ) =

∑
i λi |f(xi)〉 or D(f)(ϕ)(y) =

∑
x∈f−1(y) ϕ(x).

Moreover, D is a monad, with unit η : X → D(X) given by η(x) = 1 |x〉, and
multiplication µ : D2(X) → D(X) by µ(

∑
i λi |ϕ〉 )(x) =

∑
i λi · ϕi(x). This

monad is monoidal (or sometimes called commutative) from which the following
result follows by general categorical reasoning (see [Koc71a,Koc71b]).

Proposition 1 The category Conv = EM(D) of Eilenberg–Moore algebras is
both complete and cocomplete, and it is symmetric monoidal closed. The tensor
unit is the final singleton set 1, since D(1) ∼= 1. �



We recall that an Eilenberg–Moore algebra (of the monad D) is a map of
the form γ : D(X) → X satisfying γ ◦ η = id and γ ◦ µ = γ ◦ D(γ). A
morphism

(
D(X)

γ→ X
)
−→

(
D(X ′)

γ′→ X ′
)

in EM(D) is a map f : X → X ′

with f ◦ γ = γ′ ◦ D(f). An important point is that we identify an algebra
with a convex set: the map γ : D(X) → X turns a formal convex combination
into an actual element in X. Maps of algebras preserve such convex sums and
are commonly called affine functions. Therefore we often write Conv for the
category EM(D).

Examples 2 1. Let X be a set. The space D(X) of formal convex combina-
tions over X is itself a convex set (with structure map µX : D2(X) → D(X)).

D(2) D(3) D(4)

Given a natural number n the
space D(n + 1) is (isomorphic to)
the n-th simplex. E.g., D(1) contains a
single point, and D(2), D(3) and D(4)
are pictured right.
2. Any real vector space V is a convex set with structure map γ : D(V ) → V
given by, γ(ϕ) =

∑
v∈V ϕ(v) · v, for ϕ ∈ D(V ). 3. Obviously a convex subset of

a convex space is again a convex set. 4. A convex set which is isomorphic to a
convex subset of a real vector space is called representable. For every set X
the space D(X) is representable since D(X) is a subset of the real vector space
of functions from X to IR.

In the remainder of this section we concentrate on coproducts of convex sets.
Each category of algebras for a monad on Sets is cocomplete, by a theorem of
Linton, see e.g. [BW85, § 9.3, Prop. 4]. This applies in particular to the category
Conv = EM(D), see Proposition 1. Hence we know that coproducts + exist in
Conv, but the problem is that the abstract construction of such coproducts of
algebras uses a coequaliser in the category of algebras. Our aim is to get a more
concrete description. We proceed by first describing the coproduct X• = X + 1
in Conv, where 1 is the final one-element convex set 1 = {•}.

Elements of this ‘lift’ X• = X + 1 can be thought of as being either λx
for λ(0, 1] and x ∈ X, or the special element •. This lift construction will be
useful to construct the coproduct of convex sets later on.

Definition 3 Let X be a convex set, via α : D(X)→ X. Define the set

X• = { (λ, x) ∈ [0, 1]× (X ∪ {•} ) : λ = 0 iff x = • }.

We will often write (0, e) even when e is an expression that does not make sense.
In that case, by (0, e) we mean (0, •). For example, (0, 10 ) = (0, •). Given (λ, x) ∈
X•, we call λ the weight of (λ, x) and denote it as |(λ, x)| = λ.

Now, we may define a convex structure β : D(X•)→ X• succinctly:

β( ρ1 |(λ1, x1)〉 + · · · + ρn |(λn, xn)〉 ) = ( ζ, α(ρ1λ1

ζ |x1〉+ · · ·+ ρnλn

ζ |xn〉) ),

where ζ = λ1ρ1+· · ·+λnρn. Given an affine map f : X → Y , define f• : X• → Y•
by f•(λ, x) = (λ, f(x)) where f(•) := •.



Lemma 4 This (X•, β) is a convex set and it is the coproduct X + 1 in Conv.

Proof. The equation β ◦ η = id is easy: for (x, λ) ∈ X•,

β(η(λ, x)) = β( |(λ, x)〉 ) = (λ, α(λλ |x〉) ) = (λ, α(|x〉) ) = (λ, x).

Verification of the µ-equation is left to the reader. There are obvious coprojec-
tions κ1 : X → X• and κ2 : 1 → X• given by κ1(x) = (1, x) and κ2(•) = (0, •).
Given any convex set Y with γ : D(Y )→ Y together with affine maps c1 : X → Y
and c2 : 1 → Y , we can define a unique affine map h : X• → Y by h(λ, x) =
γ(λ |c1(x)〉 + (1−λ) |c2(•)〉 ). When x = • (and so λ = 0) we interpret h(λ, x) =
γ(|c2(•)〉). �

This lifted convex set X• provides a simple description of coproducts.

Proposition 5 The coproduct of two convex sets X and Y can be identified with
the convex subset of X• × Y• of pairs whose weights sum to one. That is:

X + Y ∼= { (x, y) ∈ X• × Y• : |x|+ |y| = 1 }

The convex structure on this subset is inherited from the product X• × Y•. The
first coprojection is given by κ1(x) = 〈 (1, x), (0, •) 〉, and there is a similar
expression for κ2. The cotuple is [f, g]((λ, x), (ρ, y)) = λf(x) + ρg(y). �

There is a similar description for the coproduct of n convex sets. E.g., for n = 3,

X + Y + Z = { (x, y, z) ∈ X• × Y• × Z• : |x|+ |y|+ |z| = 1 }.

From now on we shall use this concrete description for the coproduct + in Conv.
By the way, the initial object in Conv is simply the empty set, ∅.

3 The cancellation property for convex sets

The cancellation property that will be defined next plays an important role in
the theory of convex sets. This section collects several equivalent descriptions
from the literature, and adds one new equivalent property, expressed in terms
of ‘jointly monicity’, see Theorem 8 (4) below. Crucially, this property is part
of the axiomatisation proposed in [Jac14], and its equivalence to cancellation is
the main contribution of this section.

Definition 6 Let X be a convex set. We call X cancellative provided that for
all x, y1, y2 ∈ X and λ ∈ [0, 1] with λ 6= 1 we have

λx+ (1− λ)y1 = λx+ (1− λ)y2 =⇒ y1 = y2.

We write CConv ↪→ Conv for the full subcategory of cancellative convex sets.

Representable convex sets — subsets of real vector spaces — clearly satisfy
this cancellation property. But not all convex sets do.



Examples 7 1. If we remove from the unit interval [0, 1] the point 1 and re-
place it by a copy of the unit interval whose points we will denote by 1a
for a ∈ [0, 1], we get a convex space we will call a (pictured right).

0

10

11

The convex structure on a is such that the inclusion a 7→ 1a
is affine and the quotient a → [0, 1] which maps 1a to 1
and [0, 1) on itself is affine.
We have 1

2 · 0 + 1
2 · 10 = 1

2 = 1
2 · 0 + 1

2 · 11, but 10 6= 11.
Thus a is not cancellative and hence not representable.

2. A semilattice L becomes a convex set if we define
∑
i λixi =

∨
i xi for all xi ∈

L and λi ∈ (0, 1] with
∑
i λi = 1 (see [Neu70], §4.5). The semilattice L is

cancellative as convex set if and only if x = y for all x, y ∈ L.

Theorem 8 For a convex set X the following statements are equivalent.

1. X is cancellative — see Definition 6;
2. X is representable, i.e. isomorphic to a convex subset of a real vector space;
3. X is separated, in the sense that for all x, y ∈ X if f(x) = f(y) for all affine

maps f : X → IR, then x = y;
4. The two maps [κ1, κ2, κ2], [κ2, κ1, κ2] : X + X + X → X + X are jointly

monic in Conv.

Proof. (3) =⇒ (2) Let Aff(X) denote the set of affine maps X → IR, and V
the vector space of (all) functions Aff(X) → IR, with pointwise structure. Let
η : X → V be given by η(x)(f) = f(x). We will prove that η is an injective affine
map, making X representable.

Let x1, . . . , xN ∈ X and λ1, . . . , λN ∈ [0, 1] with
∑
n λn = 1 be given, and

also f ∈ Aff(X) be given. Since f is affine, we get that η is affine too:

η(λ1x1 + · · ·+ λNxN )(f) = f(λ1x1 + · · ·+ λNxN )

= λ1f(x1) + · · ·+ λNf(xN )

= λ1η(x1)(f) + · · · + λNη(xN )(f)

= ( λ1η(x1) + · · ·+ λNη(xN ) )(f).

Towards injectivity of η, let x, y ∈ X with η(x) = η(y) be given. Then for
each f ∈ Aff(X) we have f(x) = η(x)(f) = η(y)(f) = f(y). Thus x = y since X
is separated.
(2) =⇒ (3) Since X is representable we may assume X is a convex subset of
a real vector space V . Let x, y ∈ X with x 6= y be given. To show that X is
separated we must find an affine map f : X → IR such that f(x) 6= f(y).

Since x 6= y, we have that x − y 6= 0. By Zorn’s lemma there is a maximal
linearly independent set B which contains x− y. The set B spans V for if v ∈ V
is not in the span of B then B ∪ {v} is a linearly independent set and B is not
maximal. Thus B is a base for V . There is a unique linear map f : B → IR
such that f(x − y) = 1 and f(b) = 0 for all b ∈ B with b 6= x − y. Note
that f(x) 6= f(y). Let g : X → IR be the restriction of f to X. Then g is an
affine map and g(x) = f(x) 6= f(y) = g(y). Hence X is separated.



(2) =⇒ (1) is easy.
(1) =⇒ (2) We give an outline of the proof, but leave the key step to Stone
(see [Sto49]). Let V be the real vector space of functions from X to IR with
finite support. Recall that D(X) = {f ∈ V :

∑
x∈X f(x) = 1}. So we have a

map ηX : X → D(X) ⊆ V . Let I be the linear span of

{ ηX(γ(f))− f : f ∈ D(X) } (1)

where γ : D(X)→ X is the structure map of X. Let q : V → V/I be the quotient
map. Then by definition of I, the map q ◦ ηX : X −→ V is affine. So to show
that X is representable it suffices to show that q ◦ ηX is injective. Let x, y ∈ X
with q(ηX(x)) = q(ηX(y)) be given. We must show that x = y. We have f :=
ηX(x)− ηY (y) ∈ I. So f is a linear combination of elements from the set in (1).
By the same syntactic argument as in the proof of Theorem 1 of [Sto49] we get
that f = 0 since X is cancellative, and thus x = y.
(1) =⇒ (4) Write ∇1 = [κ1, κ2, κ2] and ∇2 = [κ2, κ1, κ2]. We will prove that ∇1

and ∇2 are jointly injective (and thus jointly monic). Let a, b ∈ X+X+X with
∇1(a) = ∇1(b) and ∇2(a) = ∇2(b) be given. We must show that a = b. Write
a ≡ (a1, a2, a3) and b ≡ (b1, b2, b3) (see Proposition 5). Then we have

∇1(a) = ( a1, a2 ⊕ a3 ), ∇2(a) = ( a2, a1 ⊕ a3 ), (2)

where ⊕ is the partial binary operation on X• given by

(λ, x)⊕ (µ, y) = (λ+ µ, λ
λ+µx + µ

λ+µy )

when λ+ µ ≤ 1, and undefined otherwise. By the equalities from Statement (2)
and similar equalities for ∇1(b) and ∇2(b), we get a1 = b1, a2 ⊕ a3 = b2 ⊕ b3,
a2 = b2, and a1 ⊕ a3 = b1 ⊕ b3. It remains to be shown that a3 = b3. It is easy
to see that ⊕ is cancellative since X is cancellative. Thus a1 ⊕ a3 = b1 ⊕ b3
and a1 = b1 give us that b1 = b3. Thus a = b.
(4) =⇒ (1) We assume that ∇1, ∇2 : X + X + X → X + X (see above) are
jointly monic and must prove that X is cancellative. The affine maps from 1
to X +X +X correspond to the (actual) points of X +X +X, so it is not hard
to see that ∇1 and ∇2 are jointly injective. Let x1, x2, y ∈ X and λ ∈ [0, 1] with
λ 6= 0 and λx1 +(1−λ)y = λx2 +(1−λ)y be given. We must show that x1 = x2.

Write ai = ( λ
2−λ , xi) and b = ( 1−λ

2−λ , y) (where i ∈ {1, 2}). Then ai, b ∈ X•.
Further, |ai|+ |b|+ |b| = 1, so vi := (b, b, a) ∈ X +X +X. Note that

ai ⊕ b = ( 1
2−λ , λxi + (1− λ)y ).

So we see that a1 ⊕ b = a2 ⊕ b. We have

∇1(b, b, a1) = (b, b⊕ a1) = (b, b⊕ a2) = ∇1(b, b, a2),

∇2(b, b, a1) = (b, b⊕ a1) = (b, b⊕ a2) = ∇2(b, b, a2).

Since ∇1,∇2 are jointly injective this entails a1 = a2. Thus x1 = x2. �



What we call (cancellative) convex sets appear under various different names
in the literature. For instance, cancellative convex sets are called convex struc-
tures in [Gud77], convex sets in [Ś74], convex spaces of geometric type in [Fri09],
and are the topic of the barycentric calculus of [Sto49]. Convex sets are called
semiconvex sets in [Ś74,Flo81], and convex spaces in [Fri09]. The fact that every
cancellative convex set is representable as a convex subset of a real vector space
was proven by Stone, see Theorem 2 of [Sto49]. The description of convex sets
as Eilenberg–Moore algebras is probably due to Świrszcz, see §4.1.3 of [Ś74] (see
also [Jac10]), but the (quasi)variety of (cancellative) convex sets was already
studied by Neumann [Neu70]. The fact that a convex set is cancellative iff it is
separated by functionals was also noted by Gudder, see Theorem 3 of [Gud77].
The separation of points (and subsets) by a functional in a non-cancellative con-
vex set has been studied in detail by Flood [Flo81]. The pathological convex
set a (see Ex. 1) appears in [Fri09].

The duality of states and effects in quantum theory, see [HZ12], is formalised
categorically in terms of an adjunction between ‘effect modules’ and convex sets.
An effect module is a positive cancellative partial commutative monoid (E,>, 0)
with a selected element 1 such that for all a there is a (unique) a⊥ with a>a⊥ = 1
and with a compatible action of [0, 1]. By EMod, we denote the category of effect
modules with maps that preserve partial addition >, scalar multiplication and 1.
For details on effect modules we refer to [Jac14], but for the record we should
note the following.

Proposition 9 The adjunction EModop � Conv obtained by “homming into
[0, 1]” restricts to an adjunction EModop � CConv. �

4 Normalisation

This section introduces a categorical description of normalisation, and illustrates
what it means in several examples. As far as we know, this is new. Roughly,
normalisation says that each non-zero substate can be written as a scalar product
of a unique state.

Definition 10 Let C be a category with finite coproducts (+, 0) and a final
object 1. We call maps 1→ X states on X, and maps 1→ X + 1 substates.

1
σ //

σ

��

X + 1

X + 1
!+id

// 1 + 1

ω+id

OO

We introduce the property normalisation as follows: for
each substate σ : 1→ X + 1 with σ 6= κ2 there is a unique
state ω : 1 → X such that ((ω ◦ !) + id) ◦ σ = σ. That is,
the diagram to the right commutes. The scalar involved is
the map (! + id) ◦ σ : 1→ 1 + 1.
(The formulation of normalisation can be simplified a bit
in the Kleisli category of the lift monad (−) + 1.)

Examples 11 We briefly describe what normalisation means in several cate-
gories, and refer to [Jac14] for background information about these categories.



1. In the Kleisli category K̀ (D) of the distribution monad D a state 1 → X
is a distribution ω ∈ D(X), and a substate 1 → X + 1 is a subdistribution
σ ∈ D≤1(X), for which

∑
x σ(x) ≤ 1. If such a σ is not κ2, that is, if

r =
∑
x σ(x) ∈ [0, 1] is not zero, take ω(x) = ϕ(x)

r . Then
∑
x ω(x) = 1.

2. Let CstarPU be the category of C∗-algebras with positive unital maps. We
claim that normalisation holds in the opposite category CstaropPU. The oppo-
site is used in this context because C∗-algebras form a category of predicate
transformers, corresponding to computations going in the reverse direction.
In CstaropPU the complex numbers C are final, and coproducts are given by ×.
Thus, let σ : A × C → C be a substate on a C∗-algebra A . If σ is not the
second projection, then r := σ(1, 0) ∈ [0, 1] is non-zero. Hence we define

ω : A → C as ω(a) = σ(a,0)
r . Clearly, ω is positive, linear and ω(1) = 1.

(In fact, substates A ×C→ C may be identified with subunital positive maps
ω : A → C, for which 0 ≤ ω(1) ≤ 1. Normalisation rescales such a map ω

to ω′ := ω(−)
ω(1) with ω′(1) = 1.)

3. The same argument can be used in the opposite category EModop of effect
modules. Hence EModop also satisfies normalisation.

4. Normalisation holds both in Conv and in CConv, that is, it holds for convex
and for cancellative convex sets. This is easy to see using the description X+
1 = X• from Lemma 4. Indeed, if σ : 1→ X• is not κ2, then writing σ(•) ≡
(λ, a) we have λ > 0 and a 6= •. Now take as state ω : 1→ X with ω(1) = a.

In the present context we restrict ourselves to effect modules and convex
sets over the unit interval [0, 1], and not over some arbitrary effect monoid, like
in [Jac14]. Normalisation holds for such effect modules over [0, 1] because we can
do division s

r in [0, 1], for s ≤ r. More generally, it must be axiomatised in effect
monoids. That is beyond the scope of the current article.

5 Effecti

The next definition refines the requirements from [Jac14] and introduces the
name ‘effectus’ for the kind of category at hand. The main result is that taking
the states of an arbitrary effects yields a functor to cancellative convex sets,
which preserves coproducts. This leads to a robust notion, which is illustrated
via the state-and-effect triangle associated with an effectus, which now consists
of maps of effecti.

Definition 12 A category C is called an effectus if:

1. it has a final object 1 and finite coproducts (0,+);
2. the following diagrams are pullbacks;

A+X
id+g //

f+id ��

A+ Y
f+id��

B +X
id+g

// B + Y

Y
κ1 ��

Y
κ1��

Y +A
id+g

// Y +B



3. the maps [κ1, κ2, κ2], [κ2, κ1, κ2] : X +X +X → X +X are jointly monic.

An effectus with normalisation is an effectus in which normalisation
holds — see Definition 10.

The main examples of effecti with normalisation — see also Examples 11
— include the Kleisli category K̀ (D) of the distribution monad D for discrete
probality, but also the Kleisli category K̀ (G) of the Giry monad for continuous
probability (which we don’t discuss here). In the quantum setting our main
example is the opposite CstaropPU of the category of C∗-algebras, with positive
unital maps.

A predicate on an object X in an effectus is an arrow X → 1 + 1. A scalar
is an arrow 1→ 1 + 1. A state on X is an arrow 1→ X. We write Pred(X) and
Stat(X) for the collections of predicates and states on X, so that the scalars are
in Pred(1) = Stat(1 + 1). We shall say that C is an effectus over [0, 1] if the set
of scalars Pred(1) in C is (isomorphic to) [0, 1]. This is the case in all previously
mentioned effecti, see Examples 11. An n-test on X is a map X → n · 1, where
n · 1 is the n-fold copower 1 + · · ·+ 1.

This paper goes beyond [Jac14] in that it considers not only effecti but also
their morphisms. This gives a new perspective, see the proposition about the
predicate functor below.

Definition 13 Let C, D be two effecti. A map of effecti C→ D is a functor
that preserves the final object and the finite coproducts (and as a consequence,
preserves the two pullbacks in Definition 12).

The next result is proven in [Jac14], without using the terminology of effecti.

Proposition 14 Let C be an effectus over [0, 1]. The assignment X 7→ Pred(X)
forms a functor Pred: C→ EModop. This functor is a map of effecti. �

This motivates us to see if there is a corresponding result for states, i.e.
whether the assignment X 7→ Stat(X) is also a map of effecti. This is where the
cancellation and normalisation properties come into play.

Proposition 15 The category CConv of cancellative convex sets is an effectus
with normalisation.

Proof. It is clear that the one-point convex set 1 is cancellative. It is also easy
to see using the description of the coproduct of convex sets from Proposition 5
that the coproduct in Conv of two cancellative convex sets is cancellative. So
the coproducts + of Conv restrict to CConv.

Moreover, the jointly monic property holds in CConv by Theorem 8, and
normalisation holds by Example 11 (4). What remains is showing that the two
diagrams in Definition 12 are pullbacks in CConv. For this we use the repre-
sentation of the coproduct of (cancellative) convex sets of Proposition 5.

To show that the diagram on the left in Definition 12 (2) is a pullback
in CConv it suffices to show that it is a pullback in Sets, so let elements (a, y) ∈



A+ Y and (b, x) ∈ B +X with (f + id)(a, y) = (id + g)(b, x) be given. We must
show that there is a unique e ∈ A+X with the following property, called P (e).

(id + g)(e) = (a, y) and (f + id)(e) = (b, x) (P (e))

We claim that P (a, x). For this we must first show that (a, x) ∈ A + X, that
is, |a| + |x| = 1. Note that since (f•(a), y) ≡ (f + id)(a, y) = (id + g)(b, x) ≡
(b, g•(x)) we have f•(a) = b and g•(x) = y. Then |a| = |f•(a)| = |b|. Further,
|b|+ |x| = 1 since (b, x) ∈ B +X. Thus |a|+ |x| = 1, and (a, x) ∈ A+X. Now,
(id + g)(a, x) = (a, g•(x)) = (a, y), and similarly we have (f + id)(a, x) = (b, x).
Hence P (a, x).

For uniqueness, suppose that (a′, x′) ∈ A + X with P (a′, x′) is given. We
must show that a = a′ and x = x′. We have (a, y) = (id+g)(a′, x′) = (a′, g•(x

′))
and similarly (b, x) = (f•(a

′), x′). Thus a′ = a and x = x′. Hence the diagram
on the left is pullback in CConv. A similar reasoning works for the diagram on
the right in Definition 12. �

Proposition 16 Let C be an effectus with normalisation over [0, 1]. The state
functor Stat : C→ Conv preserves coproducts: Stat(X+Y ) ∼= Stat(X)+Stat(Y )
for X,Y ∈ C.

Proof. For objects X,Y ∈ C, consider the canonical map:

Stat(X) + Stat(Y )
ϑ:=[ Stat(κ1), Stat(κ2) ] // Stat(X + Y )

We have to show that this ϑ is bijective. First, we give a direct expression for ϑ.
Let (x, y) ∈ Stat(X) + Stat(Y ) be such that |x|, |y| ∈ (0, 1). Then there are a
scalar λ : 1 → 1 + 1 and states x̂ : 1 → X and ŷ : 1 → Y such that (x, y) =
λκ1(x̂)+λ⊥κ2(ŷ), where λ⊥ = [κ2, κ1] ◦ λ = 1−λ. Observe ϑ(x, y) = (x̂+ ŷ)◦λ.

To prove surjectivity, let ω : 1→ X+Y be a state. Define a scalar λ = (!+!) ◦
ω : 1→ 1 + 1. Define substates x = (id+!) ◦ ω : 1→ X + 1 and y = [κ2 ◦ !, κ1] ◦
ω : 1→ Y +1. For now, suppose that λ 6= κ1 and λ 6= κ2, i.e., x 6= κ2 and y 6= κ2.
Then by normalisation, there are states x̂ : 1→ X and ŷ : 1→ Y such that

x = (x̂+ id) ◦ (! + id) ◦ x and y = (ŷ + id) ◦ (! + id) ◦ y.

Define σ := 〈 (λ, x̂), (λ⊥, ŷ) 〉 ∈ Stat(X) + Stat(Y ). We claim that ϑ(σ) = ω.
That is, we must show that (x̂+ ŷ) ◦ λ = ω. Note that the two maps

(id+!) : X + Y → X + 1 and [κ2◦!, κ1] : X + Y → Y + 1

are jointly monic in C by the pullback diagram on the left in Definition 12 (2).
Thus it suffices to show that

(id+!) ◦ (x̂+ ŷ) ◦ λ = (id+!) ◦ ω ≡ x

and [κ2 ◦ !, κ1] ◦ (x̂+ ŷ) ◦ λ = [κ2 ◦ !, κ1] ◦ ω ≡ y



We verify the first equality and leave the second equality to the reader.

(id+!) ◦ (x̂+ ŷ) ◦ λ = ( (id ◦ x̂) + (! ◦ ŷ) ) ◦ λ
= (x̂+ id) ◦ λ
= (x̂+ id) ◦ (! + id) ◦ (id+!) ◦ ω by def. of λ

= (x̂+ id) ◦ (! + id) ◦ x by def. of x

= x by def. of x̂

Suppose λ = κ2, i.e., x = κ2. Then λ⊥ = κ1, so y 6= κ2. Thus there is a unique ŷ
with y = (ŷ + id) ◦ (! + id) ◦ y = (ŷ + id) ◦ λ⊥ = (ŷ + id) ◦ κ1 = κ1 ◦ ŷ. Thus:

(id+!) ◦ κ2 ◦ ŷ = κ2 ◦ ! ◦ ŷ = κ2 = x = (id+!) ◦ ω
[κ2 ◦ !, κ1] ◦ κ2 ◦ ŷ = κ1 ◦ ŷ = y = [κ2 ◦ !, κ1] ◦ ω.

By joint monicity of (id+!) and [κ2 ◦!, κ1] we derive ω = κ2 ◦ ŷ ≡ ϑ(κ1(ŷ)). The
case for x = κ1 is similar. Thus ϑ is surjective.

For injectivity, let (x, y), (x′, y′) ∈ Stat(X)+Stat(Y ) with ϑ(x, y) = ϑ(x′, y′)
be given. Note that |x′| = (!+!) ◦ ϑ(x′, y′) = (!+!) ◦ ϑ(x, y) = |x|. Assume
that |x| ∈ (0, 1). Then there are x̂, x̂′ : 1→ X and ŷ, ŷ′ : 1→ Y such that

x = (|x|, x̂); y = (|x|⊥, ŷ); x′ = (|x|, x̂′) and y′ = (|x|⊥, ŷ′).

Consequently:

(x̂+ id) ◦ |x| = (id+!) ◦ (x̂+ ŷ) ◦ |x| = (id+!) ◦ ϑ(x, y) = (id+!) ◦ ϑ(x′, y′)

= (id+!) ◦ (x̂′ + ŷ′) ◦ |x| = (x̂′ + id) ◦ |x|.

It follows that we have two ‘normalisations’ x̂, x̂′ : 1 → X for the substate σ =
(x̂+ id) ◦ |x| = (x̂′ + id) ◦ |x| : 1→ X + 1:

(x̂+ id) ◦ (! + id) ◦ σ = (x̂+ id) ◦ |x| = (x̂′ + id) ◦ |x| = (x̂′ + id) ◦ (! + id) ◦ σ.

And thus by the uniqueness in the normalisation assumption, we conclude x̂ = x̂′.
Similarly, ŷ = ŷ′. Hence (x, y) = (x′, y′). We leave it to the reader to show
that (x, y) = (x′, y′) when |x| ∈ {0, 1}. Thus ϑ is injective. �

This preservation of coproducts is an important property for an abstract
account of conditional probability, see Section 6 for the discrete case. For C∗-
algebras the above result takes the following concrete, familiar form: let ω be a
state of the form ω : A ×B → C — so that ω is a map 1→ A +B in CstaropPU.
Take λ = ω(1, 0) ∈ [0, 1]. If we exclude the border cases λ = 0 and λ = 1, then
we can write ω as convex combination ω = λ(ω1 ◦ π1) + (1 − λ)(ω2 ◦ π2) for

states ω1 = ω(−,0)
λ : A → C and ω2 = ω(0,−)

1−λ : B → C.
Now we obtain the analogue of Proposition 14 for states.

Theorem 17 Let C be an effectus with normalisation over [0, 1]. The assign-
ment X 7→ Stat(X) yields a functor Stat : C → CConv, which is a map of
effecti.



Proof. Most of this is already clear: the functor Stat preserves + by Proposi-
tion 16. It sends the initial object 0 ∈ C to the set Stat(0) = Hom(1, 0). This
set must be empty, because otherwise 1 ∼= 0, which trivialises C and makes it
impossible that C has [0, 1] as its scalars. Also, Stat(1) ∼= 1, since there is only
one map 1→ 1.

What remains to be shown is that each convex set Stat(X) is cancellative. By
Theorem 8 we are done if we can show that the following two maps are jointly
monic in the category Conv.

Stat(X) + Stat(X) + Stat(X)
[κ1,κ2,κ2] //

[κ2,κ1,κ2]
// Stat(X) + Stat(X)

But since the functor Stat : C→ Conv preserves coproducts by Proposition 16
this is the same as joint monicity of the maps:

Stat(X +X +X)
Stat([κ1,κ2,κ2]) //

Stat([κ2,κ1,κ2])
// Stat(X +X)

Suppose we have two states ω, ω′ ∈ Stat(X+X+X) with Stat([κ1, κ2, κ2])(ω) =
Stat([κ1, κ2, κ2])(ω′) and Stat([κ2, κ1, κ2])(ω) = Stat([κ2, κ1, κ2])(ω′). This means
that ω, ω′ : 1 → X + X + X satisfy [κ1, κ2, κ2] ◦ ω = [κ1, κ2, κ2] ◦ ω′ and
[κ2, κ1, κ2] ◦ ω = [κ2, κ1, κ2] ◦ ω′. By using the joint monicity property in C, see
Definition 12 (3), we obtain ω = ω′. �

The following observation ties things closer together.

Proposition 18 The adjunction EModop � CConv from Proposition 9 can
be understood in terms of maps of effecti:

– the one functor EMod(−, [0, 1]) : EModop → CConv is the states functor
Stat = EModop(1,−), since [0, 1] is the initial effect module, and thus the
final object 1 in EModop;

– the other functor CConv(−, [0, 1]) : CConv → EModop is the predicate
functor Pred = CConv(−, 1 + 1), since the sum 1 + 1 in CConv is [0, 1]. �

The above series of results culminates in the following.

EModop
Stat --> CConv
Pred

mm

C
Hom(−,1+1)=Pred

ff

Stat=Hom(1,−)
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Corollary 19 Let C be an effectus
over [0, 1]. Then we obtain a “state-
and-effect” triangle shown on the right,
where all the arrows are maps of ef-
fecti. (Arrows need not commute.)

As degenerate cases of the triangle we obtain:

EModop
Stat

--> CConv
Pred

mm EModop
Stat

--> CConv
Pred

mm

EModop
Pred Stat

88

CConv
Pred

ff

Stat



6 Conditional probability

An essential ingredient of conditional probability is normalisation, i.e. rescaling
of probabilities: if we throw a dice, then the probability P (4) of getting 4 is 1

6 .
But the conditional probability P (4 | even) of getting 4 if we already know that
the outcome is even, is 1

3 . This 1
3 is obtained by rescaling of 1

6 , via division by the
probability 1

2 of obtaining an even outcome. Essentially this is the normalisa-
tion mechanism of Definition 10, and the resulting coproduct-preservation of the
states functor from Proposition 16, as we will illustrate in the current section.
Our general approach to conditional probability applies to both probabilistic
and quantum systems. We present it in terms of an effectus with so-called ‘in-
struments’. They are described in great detail in [Jac14], but here we repeat the
essentials, for the Kleisli category K̀ (D) of the distribution monad D. In a later,
extended version of this paper the quantum case, using the effectus CstaropPU of
C∗-algebras will be included.

Let C be an arbitrary effectus. Recall its predicate functor Pred: C →
EModop which takes the maps X → 1+1 as predicates on X. In case C = K̀ (D)
we have Pred(X) = [0, 1]X , the fuzzy predicates on X. An n-test in an effec-
tus is an n-tuple of predicates p1, . . . , pn ∈ Pred(X) with p1 > · · · > pn = 1.
In K̀ (D) this translates to predicates pi ∈ [0, 1]X with

∑
i pi(x) = 1, for each

x ∈ X. An instrument for an n-test −→p is a map instr−→p : X → n ·X in C, where
n ·X = X + · · · + X is the n-fold coproduct. These instruments should satisfy
certain requirements, but we skip them here. In K̀ (D) such an instrument is a
map instr−→p : X → D(n ·X) defined as:

instr−→p (x) = p1(x) |κ1x〉+ · · ·+ pn(x) |κnx〉 .

We can now introduce the notion of conditional state, via coproduct-preservation.

Definition 20 Let C be an effectus (over [0, 1]) with normalisation, and with
instruments as sketched above. Let ω ∈ Stat(X) be a state, and −→p = p1, . . . , pn
be an n-test on X, of predicates pi ∈ Pred(X). By applying the state functor
Stat : C→ CConv we can form the new state:

ω′ = Stat
(
instr−→p

)
(ω) ∈ Stat(n ·X)

Prop.16∼= n · Stat(X)
Prop.5

⊆
∏
n Stat(X)•

Hence we write this new state ω′ as a convex combination of what we call con-
ditional states on X, written as ω|pi ∈ Stat(X). The probabilities ri in this
convex combination can be computed as validity probabilities:

ri = ω |= pi = pi ◦ ω : 1 −→ 1 + 1.

When each ri is non-zero, there are n such conditional states ω|pi.

From a Bayesian perspective such a conditional state ω|pi can be seen as
an update of our state of knowledge, resulting from evidence pi. This will be
illustrated next in a discrete probabilistic example of Bayesian inference. It uses



the Kleisli category K̀ (D) as effectus, in which a state 1 → X in K̀ (D) corre-
sponds to a distribution ϕ ∈ D(X). Conditional states, as defined above, appear
as conditional distributions, generalising ordinary conditional probabilities.

Example 21 Suppose, at an archaeological site, we are investigating a tomb of
which we know that it must be from the second century AD, that is, somewhere
from the time period 100 – 200. We wish to learn its origin more precisely.
During excavation we are especially looking for three kinds of objects 0, 1, 2, of
which we know the time of use more precisely, in terms of “prior” distributions.
This prior knowledge involves a split of the time period 100 – 200 into four equal
subperiods A = 100 – 125, B = 125 – 150, C = 150 – 175, D = 175 – 200.
Associated with each object i = 0, 1, 2 there is a predicate pi ∈ [0, 1]{A,B,C,D},
which we write as sequence of probabilities of the form:

p0 = [0.7, 0.5, 0.2, 0.1] p1 = [0.2, 0.2, 0.1, 0.1] p2 = [0.1, 0.3, 0.7, 0.8].

Predicate p0 incorporates the prior knowledge that object 0 is with probability 0.7
from subperiod A, with probability 0.5 from subperiod B, etc. Notice that these
three predicates form a 3-test, since p0 > p1 > p2 = 1. They can be described
jointly as a Kleisli map {A,B,C,D} → D({0, 1, 2}).

Inference works as follows. Let our current knowledge about the subperiod of
origin of the tomb be given as a distribution ϕ ∈ D({A,B,C,D}). We can com-
pute ϕ′ = instr−→p (ϕ) ∈ D(3 · {A,B,C,D}) and split ϕ′ up into three conditional
distributions ϕ|p0, ϕ|p1, ϕ|p2 ∈ D({A,B,C,D}), like in Definition 20. If we find
as “evidence” object i, then we update our knowledge from ϕ to ϕ|pi.

0.25 |A〉 + 0.25 |B〉 + 0.25 |C〉 + 0.25 |D〉
0.33 |A〉 + 0.33 |B〉 + 0.17 |C〉 + 0.17 |D〉
0.09 |A〉 + 0.26 |B〉 + 0.30 |C〉 + 0.35 |D〉
0.02 |A〉 + 0.14 |B〉 + 0.37 |C〉 + 0.48 |D〉
0.05 |A〉 + 0.34 |B〉 + 0.37 |C〉 + 0.24 |D〉
0.08 |A〉 + 0.49 |B〉 + 0.26 |C〉 + 0.17 |D〉
0.10 |A〉 + 0.62 |B〉 + 0.17 |C〉 + 0.11 |D〉
0.11 |A〉 + 0.72 |B〉 + 0.10 |C〉 + 0.06 |D〉
0.12 |A〉 + 0.79 |B〉 + 0.05 |C〉 + 0.04 |D〉

Fig. 1. inferred distributions

If we start from a uniform distribution,
and find objects i1, . . . , in ∈ {0, 1, 2}, then
we have as inferred distribution (knowl-
edge) ϕ|pi1 |pi2 | · · · |pin . For instance, the
series of findings 1, 2, 2, 0, 1, 1, 1, 1 yields
the consecutive distributions shown in fig-
ure 1. Hence period B is most likely.
These distributions are computed by a
simple Python program that executes the
steps of Definition 20. Interestingly, a
change in the order of the objects that
are found does not affect the final distri-
bution. This is different in the quantum
case, where such commutativity is lacking.

7 Conclusions

Starting from convex sets, in particular from the cancellation property and a
concrete description of coproducts, we have arrived at the notion of effectus
as a step towards a categorical axiomatisation of probabilistic and quantum



computation. We have proven some ‘closure’ properties for effecti, among them
that the states functor is a map of effecti. The concept of normalisation gave rise
to a general notion of conditional state, which we have illustrated in the context
of Bayesian inference.
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