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It is well known that the C∗-algebra of an ordered pair of qubits is M2⊗M2. What about unordered
pairs? We show in detail that M3⊕C is the C∗-algebra of an unordered pair of qubits. Then we
use Schur-Weyl duality to characterize the C∗-algebra of an unordered n-tuple of d-level quantum
systems. Using some further elementary representation theory and number theory, we characterize
the quantum cycles. We finish with a characterization of the von Neumann algebra for unordered
words.

Finite dimensional quantum computation is naturally viewed as occurring in the category of finite
dimensional C∗-algebras together with completely positive unital maps, in the opposite of their usual
direction. The C∗-algebras are the types (systems). For instance:

a single qubit M2 an ordered pair of qutrits M3⊗M3
a single qutrit M3 a bit C2

a qubit or a qutrit M2⊕M3 a trit or a qubit C3⊕M2

More generally, writing JtypeK for the C∗-algebra for the type, we have:

Jd-level quantum systemK = Md Jd-level classical systemK = Cd

J(ordered) pair of t and sK = JtK⊗ JsK Jt (classical) or sK = JtK⊕ JsK.

The completely positive unital maps are the programs (operations) in the opposite direction. For example:

1. Measure a qubit in the standard basis
m : M2← C2 (qubit→ bit)
(λ ,µ) 7→ λ |0〉〈0|+µ |1〉〈1|

2. Apply Hadamard gate to a qubit
h : M2←M2 (qubit→ qubit)
a 7→ H†aH, where H = 1√

2

(
1 1
1 −1

)

3. Initialize a qutrit as 0
i : C←M3 (empty→ qutrit)
a 7→ 〈0|a |0〉

4. Forget about a qubit
d : M2← C (qubit→ empty)
λ 7→ λ1

These basic quantum types are well known, but what about an unordered pair of qubits? An un-
ordered pair of bits is simply a trit (00, 01 = 10 or 11). However, we will see an unordered pair of qubits
is not a qutrit, but rather its C∗-algebra is M3⊕C.

In Section 1, we prove this in detail to get a feel for this surprising result. Then in Section 2,
we characterize the C∗-algebras of unordered n-tuples of d-level quantum systems using Schur-Weyl
duality, which dates back to the early 20th century. Applying some elementary representation theory,
we characterize the C∗-algebra for qubit 3-cycles in Section 3. Then, using some number theory, we
characterize arbitrary quantum cycles in Section 4. We finish with a characterization of the von Neumann
algebra for the quantum unordered words in Section 5.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


2 Unordered Tuples in Quantum Computation

Unordered quantum types have been considered before. For instance in [5] they are used to give
denotational semantics to a quantum lambda calculus.1 A concrete description, however, has to our
knowledge not been published before.

At the end of the paper we will have demonstrated the following.

System Algebra
unordered pair of qubits M3⊕C
unordered n-tuple

of d-level quantum systems
⊕
λ∈Yn

Mmλ

words of qubits B(`2)
unordered words

of d-level quantum systems
B(`2)⊕

⊕
λ∈Y ∗

Mmλ

3-cycle of qubits M4⊕M2⊕M2
n-cycle

of d-level quantum systems
⊕

0≤k<n

Mck

Yn =
{

λ ; λ ∈ Nn;
[

λ1 ≥ . . .≥ λd ≥ 0

λ1 + . . .+λd = n

} (n-block Young diagrams

of height at most d)

Y ∗ =
⋃
n≥2

{λ ; λ ∈ Yn; λ2 6= 0}

mλ = ∏
1≤i< j≤d

λi−λ j + j− i
j− i

(Dimension corresponding

representation GL(d))

ck =
1
n ∑

l|n
d

n
l µ

( l
gcd(l,k)

)
φ(l)

φ
( l

gcd(l,k)

) (Ramanujan sum)

ϕ : Euler’s totient

µ : Möbius function

See appendix A for some decompositions computed using these formulae.

1 An Unordered Pair of Qubits

The Hilbert space of a pair of qubits is C2⊗C2. Write H = C2⊗C2. Let σ : H →H denote the
unitary map that exchanges the two qubits:

σ :
|00〉 7→ |00〉 |01〉 7→ |10〉
|10〉 7→ |01〉 |11〉 7→ |11〉

An important category to study semantics of finite-dimensional quantum computation is Starop
cPU, which

we will define in a moment. It is important as every object corresponds to a type of finite-dimensional
quantum system and every arrow to a program of the corresponding type. Conversely, every physical

1The type JqubitK�2 from [5, Example 23] corresponds to an unordered pair of qubits and thus has as C∗-algebra M3⊕C.
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finite dimensional quantum type and program corresponds to an object and arrow (respectively) in this
category.

The objects are finite-dimensional C∗-algebras2. As the norm plays no rôle in this paper, these are
equivalently semisimple ∗-algebras over C, and are also equivalently finite dimensional W∗-algebras.
Accordingly, we refer to them as ∗-algebras in the rest of the paper. We remark, however, that there
are finite-dimensional ∗-algebras in the axiomatic sense that are not C∗-algebras and these are excluded.
The arrows in StarcPU are completely positive unital linear maps, and in Starop

cPU they are in the opposite
direction. 3

The ∗-algebra of a pair of qubits is B(H )∼= M4. The map that exchanges the two qubits is given by:

B(σ) : M4←M4, a 7→ σ
−1aσ = σaσ .

We claim the ∗-algebra of an unordered pair of qubits must be the coequalizer of B(σ) and id. This is
the equalizer in StarcPU, which is the following subalgebra of M4

E = {a; a ∈M4; σaσ = a} ⊆M4.

First note the analogy with the classical case: to form an unordered pair of bits, one takes the quotient
with respect to the equivalence relation defined by permuting the bits, which identifies 01 and 10. This is
a coequalizer in the category Set. Why is the coequalizer used? The definition gives the following rule:
for every program f : M4← A invariant under swapping (σ ◦ f = f ) there is a unique lift f ′ : E ← A
such that e◦ f ′ = f , where e : E ⊆M4 is the coequalizer map.

What ∗-algebra is E? We write S for the symmetric part of H :

S = {v; v ∈H ; σv = v}.

One might expect E = B(S ), but this is not the case. There is another summand of E. First, we must
take a small detour. It is easy to verify that the projection onto S is given by

PS : v 7→ v+σv
2

,

which is called the symmetrizer. The complementary projection PA = I−PS

PA : v 7→ v−σv
2

projects onto the antisymmetric subspace of H , which is given by

A = {v; v ∈H ; σv =−v}.

By considering the images of the standard basis vectors under PA and PS , it is easy to determine that

{|00〉 , |11〉 , 1√
2
|01〉+ 1√

2
|10〉} and { 1√

2
|01〉− 1√

2
|10〉}

are orthonormal bases for S and respectively A .

2Which are automatically unital.
3The category Starop

cPU and its variations occur under different names in the literature. The category Starop
cP of finite dimen-

sional C∗-algebras with c.p. maps in the opposite direction is equivalent to the category CP∗[FHilb] from [1]. If we restrict to
subunital maps, we call the category Starop

cPsU, which is equivalent to the category Q from [7] and the category CPMs from [5].
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There is a map i : B(S )⊕B(A )→ B(S ⊕A )∼= B(H ), given by

(s,a) 7→ s⊕a =

(
s 0
0 a

)
.

Its image, Im i, is actually the equalizer E. We have to show both inclusions.
First, suppose a ∈ Im i. Then a = PS aPS +PA aPA . Note that σPS = PS σ = PS and σPA =

PA σ =−PA . Thus:

σaσ = σPS aPS σ +σPA aPA σ = PS aPS +PA aPA = a.

Hence a ∈ E.
Conversely, suppose a ∈ E. First note that a = PS aPS +PA aPA +PS aPA +PA aPS . Now since

σaσ = a, we have:

PS aPS +PA aPA +PS aPA +PA aPS = PS aPS +PA aPA −PS aPA −PA aPS .

Thus PS aPA =−PA aPS . Their images are orthogonal, hence PS aPA = PA aPS = 0. So a = PS aPS +
PA aPA , and hence a ∈ Im i.

Thus E ∼= B(S )⊕B(A ) ∼= M3⊕C. At first one might be surprised that the antisymmetric vec-
tor 1√

2
|01〉− 1√

2
|10〉 of H is a possible state of an unordered pair of qubits, since σ changes its sign.

The explanation is simple: in ∗-algebras, two states that differ only by global phase are identified. Thus
the antisymmetric vector is symmetric up to global phase −1.

An astute reader might note that we have proven a bit more: the ∗-algebra associated to an unordered
pair of d-level quantum systems is given by B(A )⊕B(S ) as well, where A ,S ⊆ Cd⊗Cd are defined
similarly.

2 Unordered Tuples

In the previous section, we have shown how to characterize the ∗-algebra for a pair of qubits. In this
section, we will generalize to arbitrary tuples. We define an unordered n-tuple of d-level quantum sys-
tems as follows. Consider the Hilbert space (Cd)⊗n. A permutation of n elements π ∈ Sn acts on it in an
obvious way, by permuting the basis vectors as follows:

π : |i1i2 . . . in〉 7→ |iπ−1(1) . . . iπ−1(n)〉 . (1)

The equalizer of all π ∈ Sn in StarcPU is the ∗-algebra for unordered n-tuples of d-level quantum systems.
It is given by the following subalgebra of B((Cd)⊗n)

E = {a; π
−1aπ = a for all π ∈ Sn} ⊆ B((Cd)⊗n).

The final result is:

E ∼=
⊕

λ1≥...≥λd≥0
λ1+...+λd=n
λ1,...,λd∈N

Mmλ
where mλ = ∏

1≤i< j≤d

λi−λ j + j− i
j− i

.

To prove this, we will first review some of the basics of representation theory of finite groups. Then we
will introduce Schur-Weyl duality to prove the result.
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A representation of a group is a pair (V,ρ), where V is a vector space and ρ : G→ GL(V ) is a
group homomorphism. Often, one refers to the vector space V as the representation instead of the group
homomorphism. When considering the action of g ∈ G on vectors v ∈V it is common to leave out the ρ

and write gv instead of ρ(g)v.
We now give some examples of representations. The vector space (Cd)⊗n is a representation of Sn, by

the action given in equation (1). Another one is that for any group G, we can consider ρtrivial : G→GL(C)
given by ρtrivial(g) = I. This is called the trivial representation.

Given two representations ρ : G→GL(V ) and σ : G→GL(W ) a morphism f from ρ to σ is a linear
map f : U → V such that σ(g) f = f ρ(g) for every g ∈ G. That is: linear maps that commute with the
group actions of the representations.

We can relate morphisms of representations to the equalizer that we want to calculate as follows.

Rep(Sn)((Cd)⊗n,(Cd)⊗n) = {a; a ∈ B((Cd)⊗n); πa = aπ for all π ∈ Sn}
= {a; a ∈ B((Cd)⊗n); π

−1aπ = a for all π ∈ Sn}
= E.

Given two representations ρ : G→GL(V ),σ : G→GL(W ), one can define the direct sum represen-
tation on V ⊕W by (ρ,σ)(g)(v,w) = (ρ(g)(v),σ(g)(w)). A representation is called indecomposable if
it is not the direct sum in this way of two other representations.

Given a representation on a vector space V and a subspace U , one calls U invariant (under G) if
for every u ∈ U and g ∈ G we have gu ∈ U . A representation on V is called irreducible if the only
invariant subspaces are {0} and V itself. This intentionally implies that the unique representation on the
zero-dimensional vector space is not irreducible, for the same reason that 1 is not prime and /0 is not
connected as a topological space.

A slightly surprising, but welcome, theorem is that a representation of a finite group is indecom-
posable if and only if it is irreducible. Furthermore, every representation is uniquely the direct sum of
irreducible representations (up to isomorphism). See [2, Proposition 1.5].

Thus there are distinct irreducible representations Uλ and natural numbers mλ , called multiplicities,
such that (Cd)⊗n ∼=

⊕
U⊕mλ

λ
and hence

E ∼=
⊕
λ ,µ

Rep(Sn)(U
mλ

λ
,Umµ

µ ).

Now, given a morphism between representations, it is easy to see that its kernel and image are invari-
ant. Thus, the only morphisms between irreducible representations are invertible or zero maps. This is
the first part of Schur’s lemma. Consequently the maps between non-isomorphic irreducible representa-
tions are 0 and do not contribute to the direct sum, giving

E ∼=
⊕

λ

Rep(Sn)(U
mλ

λ
,Umλ

λ
).

The second part of Schur’s lemma is the following observation. Suppose we have an endomorphism f
of an irreducible representation V . Since the base field C is algebraically closed, f must have an eigen-
value λ , which is to say that f − λ I has non-trivial kernel. The map f − λ I is itself a morphism of
representations, and since V is irreducible, ker( f −λ I) = V and so f −λ I = 0. That is to say: f = λ I.
Thus endomorphisms of irreducible representations are scalar multiples of the identity. We deduce

E ∼=
⊕

λ

Mmλ
.
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Thus, if we know the irreducible representations of Sn and their multiplicities in (Cd)⊗n, then we know E.
Schur-Weyl duality solves this problem for us. It gives a correspondence between the irreducible repre-
sentations of Sn in (Cd)⊗n and of GL(d) in (Cd)⊗n. The space (Cd)⊗n is a representation of GL(d), via
the following action

gv1⊗ . . .⊗ vn = (gv1)⊗ . . .⊗ (gvd).

Schur-Weyl duality asserts
(Cd)⊗n ∼=

⊕
λ1≥...≥λd≥0
λ1+...+λd=n
λ1,...,λd∈N

Uλ ⊗Vλ ≡
⊕

λ1≥...≥λd≥0
λ1+...+λd=n
λ1,...,λd∈N

U⊕dimVλ

λ

where Uλ are irreducible representations of Sn and Vλ are irreducible representations of GL(d). See [2,
Exercise 6.30]. Thus mλ = dimVλ . Together with the duality statement, we are given explicit construc-
tions for Uλ and Vλ . See [2, Theorem 4.3] and [2, §6.1]. From this one can derive[2, Theorem 6.3 (1)]
that

dimVλ = ∏
1≤i< j≤d

λi−λ j + j− i
j− i

.

In particular, in the case of unordered n-tuples of qubits, we see dimVλ = λi−λ j + j− i and hence

E ∼=

{⊕
1≤i≤ n

2+1 M2i−1 n even⊕
1≤i≤ n+1

2
M2i n odd.

3 A 3-cycle of Qubits

Unordered tuples are defined by quotienting out the action of the symmetric group. Similarly, we can
define other types by quotienting out the action of a subgroup of the symmetric group. The methods
of the previous section can be adapted to this situation as well. We will consider cycles, which are
not as interesting a type as unordered tuples, but they serve as an example easily related to regular
combinatorics.

A 3-cycle of qubits is given by the equalizer

E = {a; a ∈M8; π
−1aπ = a; π ∈C3 ≤ S3} ⊆M8.

The cyclic subgroup C3 of S3 contains {(),(1 2 3),(1 3 2)}. We can use the same argument as before to
derive that E ∼=

⊕
i Mmi , where mi is the multiplicity of the ith irreducible representation of C3 in C2⊗

C2⊗C2. However, Schur-Weyl duality will not help this time. We need to determine the multiplicities mi

in another way.
To this end, we recall the theory of characters. Given a representation ρ : G→GL(V ). For each g∈G

we can consider the trace Trρ(g). This yields a map χV = Tr◦ρ : G→ C, which is called the character
of ρ .

By the cyclic property of the trace, we have for any character χ that χ(h−1gh) = χ(ghh−1) = χ(g).
Thus on the same conjugacy class, a character will give the same value. Such a function is called a class
function.

Using Schur’s lemma one can work out that

dimRep(G)(V,W ) =
1

#G ∑
g∈G

χV (g)χW (g) =

{
1 V ∼=W
0 V 6∼=W.
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Also, using spectral decomposition, we can derive χV⊕W = χV + χW . Thus, for two such class func-
tions α,β : G→ C, one is lead to define

(α,β ) =
1

#G ∑
g∈G

α(g)β (g).

This is an Hermitian inner product on the class functions. In fact, with respect to this inner product

1. the characters of irreducible representations are an orthonormal basis of the class functions;

2. a representation V is irreducible if and only if (χV ,χV ) = 1;

3. there are as many irreducible representations as conjugacy classes and

4. the multiplicity of V in W is (χV ,χW ).

See [2, §2.2 and Proposition 2.30].
Thus, to determine the multiplicities of the irreducible representations of C3 in C2⊗C2⊗C2, it is

sufficient to determine the character of C2⊗C2⊗C2 and the characters of the irreducible representations
of C3.

We determine the irreducible representations of C3 as follows. As C3 is Abelian, its conjugacy classes
are trivial. Write π for the generator of C3 such that C3 = {1,π,π2}. Thus, we are looking for #C3 = 3
irreducible representations. The trivial representation maps every group element to the identity matrix.
It has character (1,1,1). Then we have two 1-dimensional representations given by π 7→ (ω) and π 7→
(ω2), where ω = e

2
3 iπ . Using the inner product, we can compute that these are distinct irreducible

representations. We summarize these results in a character table:
C3 ≤ S3 1 π π2

trivial 1 1 1
first 1 ω ω2

second 1 ω2 ω

Now we compute the character χ of C2⊗C2⊗C2. This is particularly easy because of the way the
action is defined: the value of the character on g is the number of basis vectors fixed by g. Thus:

C3 ≤ S3 1 π π2

C2⊗C2⊗C2 8 2 2
We compute

(χtrivial,χ) = 4 (χfirst,χ) = 2 (χsecond,χ) = 2.

Thus the ∗-algebra for a 3-cycle of qubits is given by E = M4⊕M2⊕M2.

4 Cycles

Now we characterize arbitrary cycles: a n-cycle of d-level quantum systems is given by the equalizer

E = {a; a ∈ B((Cd)⊗n); g−1ag = a; g ∈Cn ≤ Sn} ⊆ B((Cd)⊗n).

First, we compute the irreducible representation of Cn. Let π ∈Cn be such that Cn = {1,π,π2, . . . ,πn}.
Note that by commutativity, the conjugacy classes are trivial. For any 0≤ k ≤ n, define a 1-dimensional
representation ρk by

ρk : Cn→ GL(C) π
i 7→ (ωki),
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where ω = e2πi/n. Note that ρ0 is the trivial representation. Now, observe

(ρi,ρi) =
1
n ∑

0≤i<n
|ω ik|2 = 1

and Trρ j(π) 6= Trρi(π) whenever i 6= j, so these are k distinct irreducible representations. The character
table is given by

Cn ≤ Sm 1 π π2 . . . πn−1

ρ0 1 1 1 . . . 1
ρ1 1 ω ω2 . . . ωn−1

ρ2 1 ω2 ω4 . . . ω2(n−1)

...
...

ρn−1 1 ωn−1 ω2(n−1) . . . ω(n−1)2

Now we will compute that character χ of the representation on (Cd)⊗n. The value of χ(π i) is the
number of basis vectors that are fixed by π i.

All of the basis vectors are fixed by 1 = π0, so χ(1) = dn. The only basis vectors fixed by π are of
the form |vv . . .v〉. The general case is more subtle. For instance, suppose n = 4 and d = 2. Then |0101〉
is fixed by π2.

Given 0≤ i < n. If a basis vector |v1 . . .vn〉 is fixed by π i, then we must have v j = vπ i( j) = vπ2i( j) = . . .

for any 0 ≤ j < n. If i is coprime to n, then {0,π i(0),π2i(0), . . .} (the orbit of the subgroup generated
by π i) ranges over all indices and thus the basis vector must be of the form |vv . . .v〉. If j is not coprime
to n, then {1,2, . . . ,n} splits into several equally sized orbits. The size of each of them is the order
of π i, which equals n

gcd(i,n) . Thus the number of orbits is gcd(i,n). On each of the orbits, the basis

vector has the same value, but is otherwise unrestricted. Thus there are dgcd(i,n) basis vectors fixed by π i.
Thus χ(π i) = dgcd(i,n).

Now, we will compute the multiplicity of the kth irreducible representation in ρ , which is given
by (χk,χ):

(χk,χ) =
1
n ∑

0≤ j<n
ω

jkdgcd( j,n)

=
1
n ∑

l|n
∑

1≤ j≤n
gcd( j,n)=l

ω
jkdl

=
1
n ∑

l|n
dl

∑
1≤ j≤n

gcd( j,n)=l

ω
jk. (2)

As l divides j, we may substitute jl for j and get:

(χk,χ) =
1
n ∑

l|n
dl

∑
1≤ jl≤n

gcd( jl,n)=l

ω
jlk =

1
n ∑

l|n
dl

∑
1≤ j≤ n

l
gcd( j, n

l )=1

ω
jlk.

In [6], Ramanujan introduced (what are now called) Ramanujan sums:

cn(m) = ∑
1≤h≤n

gcd(h,n)=1

e
(hm

n

)
,
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where e(x) = e2πix. Note that ω jlk = e
( jlk

n

)
. Consequently

(χk,χ) =
1
n ∑

l|n
dlc n

l
(k) =

1
n ∑

l|n
d

n
l cl(k).

Hölder gave a simple expression for cl(k), see [4, Theorem 272]:

cl(k) = µ

( l
gcd(l,k)

)
φ(l)

φ
( l

gcd(l,k)

) ,
where µ is the Möbius function and φ is Euler’s totient. Therefore:

(χk,χ) =
1
n ∑

l|n
d

n
l µ

( l
gcd(l,k)

)
φ(l)

φ
( l

gcd(l,k)

) .
There are two cases of particular interest, which can be proven directly from (2):

• If n is a prime number, then:

(χk,χ) =

{
dn+(n−1)d

n k = 0
dn−d

n k > 0.

• The multiplicity corresponding to the trivial representation is

(χ0,χ) =
1
n ∑

l|n
d

n
l µ(1)φ(l) =

1
n ∑

l|n
dl

φ
(n

l

)
.

This is MacMahon’s formula for counting the number of possible necklaces with n beads, where
we may choose from d different colors of beads. See [3, 4.63].

5 Unordered Words

Classically, a word is just a n-tuple for some n. To work out what should be an unordered word, we
simply work out what is an unordered n-tuple. In the quantum analogue, such a reduction does not work.
Again, we need to tune our methods to work out a suitable equalizer.

The Hilbert space for quantum words over a d-level quantum system is the infinite dimensional
Hilbert space

H :=
⊕
n∈N

(Cd)⊗n.

Note that it only contains sequences that are square summable. The corresponding von Neumann algebra
is the set of all bounded operators B(H ).

We will define an action ρH of ∏n∈N Sn on H as follows.

ρH (π1,π2, . . .)(|i1 . . . im〉) = |iπ−1
m (1) . . . iπ−1

m (m)〉

We wish to compute the equalizer of the actions, which is simply given by

E = {a; a ∈ B(H ); π
−1aπ = a for all π ∈∏

n∈N
Sn}

= BRep(∏nSn)(H ,H ), (3)
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where BRep(∏nSn)(H ,H ) denotes the morphisms of representations that are bounded (as linear maps
between Hilbert spaces).

We cannot simply apply the same techniques as in Section 2. There are various difficulties. First,
H is infinite dimensional and the group ∏n Sn is not finite so it does not follow from the theory we used
previously that H splits into irreducible representations of ∏n Sn. Secondly, the infinite product

⊕
is not

a coproduct anymore. We will work around these issues ad hoc. It is possible to give ∏n Sn a compact
topology using Tychonoff’s theorem and use the representation theory of compact groups, but we do not
pursue that direction.

Let in : Sn→∏n∈N Sn denote the obvious inclusion and pn : B(H)→ B((Cd)⊗n) the obvious projec-
tion. Then pn ◦ρH ◦ in is the action we considered in (1). Recall that

(Cd)⊗n ∼=
⊕
λ∈Yn

U⊕mλ

λ
where mλ = ∏

1≤i< j≤d

λi−λ j + j− i
j− i

and Uλ are distinct irreducible representations for Sn indexed by

Yn =
{

λ ; λ ∈ Nn;
[

λ1 ≥ . . .≥ λd ≥ 0

λ1 + . . .+λd = n

}
,

which are called n-block Young diagrams of height at most d. The diagram λ is often depicted as
a row of λ1 blocks, then a row of λ2 blocks beneath it and so on. All blocks are left justified. For

instance, (4,2,0) is written as .
Note that Uλ for any λ ∈Yn is an irreducible representation for ∏n∈N Sn as well, since Sm acts trivially

on Uλ if m 6= n. However, not all Uλ are distinct.
For each n ∈ N, there is the trivial representation of Sn. They correspond to the Young diagrams of

height 1 ( , , , . . . ). They are all isomorphic as representations of ∏n∈N Sn. The representation
isomorphism between any two, is the unique non-zero map between the 1-dimensional subspaces. We
will show all other representations are distinct.

The kernel of a representation (V,ρ), is the subgroup of elements that map to the identity operator,
equivalently the kernel of ρ as a group homomorphism. If two representations are isomorphic then their
kernels and dimensions are the same.

Given n,m ∈ N and λ ∈ Yn and µ ∈ Ym with λ 6= µ such that, without loss of generality, Uλ is not
a trivial representation. Suppose n = m and Uλ is isomorphic to Uµ as representation of ∏n∈N Sn. Then
it is also isomorphic via the same isomorphism as representation of Sn = Sm, which is a contradiction.
Thus Uλ and Uµ are distinct.

For the remaining case, suppose n 6= m. Because Uλ is not a trivial representation, there is an ele-
ment π ∈ Sn that is not in its kernel. If Uµ is a trivial representation, then Uλ and Uµ must be distinct as
they have different kernels. If Uµ is not a trivial representation, then there is an element π ′ ∈ Sm that is
not in its kernel. By definition of the action on H , every element of Sn is in the kernel of Uµ . Thus Uλ

and Uµ have different kernel. Hence they are distinct.
We have a direct sum decomposition of H into irreducible representations of ∏n∈N Sn:

H =
⊕
n∈N

(Cd)⊗n ∼=U⊕ω

trivial⊕
⊕
n∈N
λ∈Yn

h(λ )6=1

U⊕mλ

λ
,

where Utrivial =U =U = . . . is the trivial representation. Write

Y ∗ =
⋃

n∈N
{λ ; λ ∈ Yn; h(λ ) 6= 1}.
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Now recall (3):

E = BRep(∏nSn)(H ,H )

∼= BRep(∏nSn)(U⊕ω

trivial⊕
⊕
n∈N
λ∈Yn

h(λ )6=1

U⊕mλ

λ
,U⊕ω

trivial⊕
⊕
n∈N
λ∈Yn

h(λ )6=1

U⊕mλ

λ
).

Using Schur’s lemma and the fact that ⊕ is a biproduct, we derive

E ∼= BRep(∏nSn)(U⊕ω

trivial,U
⊕ω

trivial)

⊕BRep(∏nSn)(
⊕

λ∈Y ∗
U⊕mλ

λ
,
⊕

λ∈Y ∗
U⊕mλ

λ
)

∼= B(`2)⊕BRep(∏nSn)(
⊕

λ∈Y ∗
U⊕mλ

λ
,
⊕

λ∈Y ∗
U⊕mλ

λ
).

We have to be a bit more careful for the right-hand summand, since
⊕

is not a countable biproduct.

BRep(∏nSn)(
⊕

λ∈Y ∗
U⊕mλ

λ
,
⊕

λ∈Y ∗
U⊕mλ

λ
)

=

{
(aλ µ);

[aλ µ ∈ BRep(∏nSn)(U
⊕mλ

λ
,U⊕mµ

µ );

(aλ µ) ∈ B(
⊕

λ∈Y ∗
U⊕mλ

λ
); λ ,µ ∈ Y ∗

}
(dfn.)

=

{
(aλλ );

[aλλ ∈ BRep(∏nSn)(U
⊕mλ

λ
,U⊕mλ

λ
);

(aλλ ) ∈ B(
⊕

λ∈Y ∗
U⊕mλ

λ
); λ ∈ Y ∗

}
(Schur’s lemma)

=

{
(aλλ );

[
aλλ ∈ BRep(∏nSn)(U

⊕mλ

λ
,U⊕mλ

λ
);

sup
λ

‖aλλ‖< ∞; λ ∈ Y ∗
}

(∗, see below)

∼=
{
(aλ );

[
aλ ∈Mmλ

sup
λ

‖aλ‖< ∞; λ ∈ Y ∗
}

(reindexing)

∼= ∏
λ∈Y ∗

Mmλ
.

Consequently
E ∼= B(`2)⊕ ∏

λ∈Y ∗
Mmλ

.

For step ∗, note that the inclusion ⊆ is easy, and the other inclusion is can be carefully checked using
the definition of the direct sum and noting the cross terms are zero. We also emphasize that the infinite
product should be interpreted for C∗ or W∗-algebras, with the norm bounded (the C∗-sum). This is, in
general, a strict subalgebra of the infinite product in C-algebras or rings.
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A Computed decompositions

For easy reference, we have computed4. the decompositions into matrix algebras of the C∗-algebras for
unordered pairs, triples and quads for various types.

d
2 M3 C
3 M6 M3
4 M10 M6
5 M15 M10
6 M21 M15
7 M28 M21
8 M36 M28
9 M45 M36

10 M55 M45

(a) unordered pairs

d
2 M4 M2
3 M10 M8 C
4 M20 M20 M4
5 M35 M40 M10
6 M56 M70 M20
7 M84 M112 M35
8 M120 M168 M56
9 M165 M240 M84

10 M220 M330 M120

(b) unordered triples

d
2 M5 M3 C
3 M15 M15 M6 M3
4 M35 M45 M20 M15 C
5 M70 M105 M50 M45 M5
6 M126 M210 M105 M105 M15
7 M210 M378 M196 M210 M35
8 M330 M630 M336 M378 M70
9 M495 M990 M540 M630 M126

10 M715 M1485 M825 M990 M210

(c) unordered quads

Table 1: Decompositions into matrix algebras of unordered pairs, triples and quads of various types.

4The script used for the computation can be found here: https://westerbaan.name/~bas/math/bags.py

https://westerbaan.name/~bas/math/bags.py
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