Unordered Tuples in Quantum Computation

Robert Furber
Bas Westerbaan
rfurber@cs.ru.nl bwesterb@cs.ru.nl

Radboud Universiteit Nijmegen

$$
\text { July 15, } 2015
$$

What we did

What we did

Computed algebras for several unordered quantum types. (eg. unordered pair, cycles)

What we did

Computed algebras for several unordered quantum types. (eg. unordered pair, cycles) using representation theory of finite groups.

What we did

Computed algebras for several unordered quantum types. (eg. unordered pair, cycles) using representation theory of finite groups.
(After discussing paper of Pagani, Selinger, Valiron with Sam Staton.)

The heavy lifting

The heavy lifting

Schur

Weyl

Quantum types as algebras

type
algebra

Quantum types as algebras

type
algebra qubit

Quantum types as algebras

type
algebra qubit
$M_{2} \cong B\left(\mathbb{C}^{2}\right)$

Quantum types as algebras

type
qubit
bit

Quantum types as algebras

type
qubit
bit
algebra
$M_{2} \cong B\left(\mathbb{C}^{2}\right)$
\mathbb{C}^{2}

Quantum types as algebras

type
qubit
bit
algebra
$M_{2} \cong B\left(\mathbb{C}^{2}\right)$
\mathbb{C}^{2}
(ordered) pair of bits

Quantum types as algebras

type
qubit
bit
(ordered) pair of bits
algebra
$M_{2} \cong B\left(\mathbb{C}^{2}\right)$
\mathbb{C}^{2}
$\mathbb{C}^{2} \otimes \mathbb{C}^{2} \cong \mathbb{C}^{4}$

Quantum types as algebras

type
quit
bit
(ordered) pair of bits
(ordered) pair of quits
algebra
$M_{2} \cong B\left(\mathbb{C}^{2}\right)$
\mathbb{C}^{2}
$\mathbb{C}^{2} \otimes \mathbb{C}^{2} \cong \mathbb{C}^{4}$
都
?

Quantum types as algebras

type
qubit
bit
(ordered) pair of bits
(ordered) pair of qubits
algebra
$M_{2} \cong B\left(\mathbb{C}^{2}\right)$
\mathbb{C}^{2}
$\mathbb{C}^{2} \otimes \mathbb{C}^{2} \cong \mathbb{C}^{4}$
$M_{2} \otimes M_{2} \cong B\left(\mathbb{C}^{4}\right)$

Quantum types as algebras

(ordered) pair of qubits $M_{2} \otimes M_{2} \cong B\left(\mathbb{C}^{4}\right)$
algebra
$M_{2} \cong B\left(\mathbb{C}^{2}\right)$
\mathbb{C}^{2}
$\mathbb{C}^{2} \otimes \mathbb{C}^{2} \cong \mathbb{C}^{4}$
type
qubit
bit
(ordered) pair of bits unordered pair of bits

Quantum types as algebras

type
qubit
bit
(ordered) pair of bits
(ordered) pair of qubits $M_{2} \otimes M_{2} \cong B\left(\mathbb{C}^{4}\right)$
unordered pair of bits
algebra
$M_{2} \cong B\left(\mathbb{C}^{2}\right)$
\mathbb{C}^{2}
$\mathbb{C}^{2} \otimes \mathbb{C}^{2} \cong \mathbb{C}^{4}$
\mathbb{C}^{3}

Quantum types as algebras

type
qubit
bit
(ordered) pair of bits
(ordered) pair of qubits $M_{2} \otimes M_{2} \cong B\left(\mathbb{C}^{4}\right)$
unordered pair of bits
algebra
$M_{2} \cong B\left(\mathbb{C}^{2}\right)$
\mathbb{C}^{2}
$\mathbb{C}^{2} \otimes \mathbb{C}^{2} \cong \mathbb{C}^{4}$
$\mathbb{C}^{3}\{00,01=10,11\}$

Quantum types as algebras

type
qubit
bit
algebra
$M_{2} \cong B\left(\mathbb{C}^{2}\right)$
\mathbb{C}^{2}
$\mathbb{C}^{2} \otimes \mathbb{C}^{2} \cong \mathbb{C}^{4}$
(ordered) pair of qubits $M_{2} \otimes M_{2} \cong B\left(\mathbb{C}^{4}\right)$
unordered pair of bits $\mathbb{C}^{3}\{00,01=10,11\}$ unordered pair of qubits ?

Unordered pair of qubits

Unordered pair of qubits

I asked a physicist.
He replied:

Unordered pair of qubits

I asked a physicist.
He replied: "Fermions or Bosons?"

Unordered pair of qubits

I asked a physicist.
He replied: "Fermions or Bosons?"

1. Bosons: M_{3}

Unordered pair of qubits

I asked a physicist.
He replied: "Fermions or Bosons?"

1. Bosons: M_{3}

$$
|00\rangle,|11\rangle,|01\rangle+|10\rangle
$$

Unordered pair of qubits

I asked a physicist.
He replied: "Fermions or Bosons?"

1. Bosons: M_{3}

$$
|00\rangle,|11\rangle,|01\rangle+|10\rangle
$$

2. Fermions: \mathbb{C}

Unordered pair of qubits

I asked a physicist.
He replied: "Fermions or Bosons?"

1. Bosons: M_{3}

$$
|00\rangle,|11\rangle,|01\rangle+|10\rangle
$$

2. Fermions: \mathbb{C}

$$
|01\rangle-|10\rangle
$$

Unordered pair of qubits

I asked a physicist.
He replied: "Fermions or Bosons?"

1. Bosons: M_{3}

$$
|00\rangle,|11\rangle,|01\rangle+|10\rangle
$$

2. Fermions: \mathbb{C}
$|01\rangle-|10\rangle$
(Pauli exclusion principle)

CS Reflex

1. Type should not depend on implementation

CS Reflex

1. Type should not depend on implementation
2. Type should come with a rule

CS Reflex

1. Type should not depend on implementation
2. Type should come with a rule So what about CoEq(id, swap)?

CS Reflex

1. Type should not depend on implementation
2. Type should come with a rule

So what about CoEq(id, swap)?

$$
\xlongequal{t \otimes t \xrightarrow{f} s \quad(f \circ \text { swap }=f)} \underset{\operatorname{CoEq}(\text { id }, \text { swap }) \underset{f^{\prime}}{\rightarrow} s}{ }
$$

CoEq(id, swap)

CoEq(id, swap)

$M_{3} \oplus \mathbb{C}$

CoEq(id, swap)

$$
\underset{\left(\text { ln fl-CStar }_{\text {cpsu }}^{\circ}\right)}{M_{3}}
$$

CoEq(id, swap)

$M_{3} \oplus \mathbb{C}$

(In Selinger's Q)

CoEq(id, swap)

$M_{3} \oplus \mathbb{C}$
($\mathrm{In} \mathrm{CPM}_{s}$)

CoEq(id, swap)

$$
\underset{(\mathrm{lnff-CStarcpu})}{\mathrm{M}_{3} \oplus \mathbb{C}}
$$

M_{3} comes from $|00\rangle,|11\rangle$ and $|10\rangle+|01\rangle$.

CoEq(id, swap)

$$
\begin{aligned}
& M_{3} \oplus \mathbb{C} \\
& \text { (In fd-CStar }{ }_{\text {cPsu }}^{\text {op }} \text {) }
\end{aligned}
$$

M_{3} comes from $|00\rangle,|11\rangle$ and $|10\rangle+|01\rangle$.
\mathbb{C} corresponds to $|01\rangle-|10\rangle$, which is symmetric up to global phase.

The coequalizer is easy to describe:

$$
E=\left\{a ; a \in M_{2} \otimes M_{2} ; \operatorname{swap}(a)=a\right\}
$$

The coequalizer is easy to describe:

$$
E=\left\{a ; a \in M_{2} \otimes M_{2} ; \operatorname{swap}(a)=a\right\}
$$

Crux: $E \cong M_{3} \oplus \mathbb{C}$.

The coequalizer is easy to describe:

$$
E=\left\{a ; a \in M_{2} \otimes M_{2} ; \operatorname{swap}(a)=a\right\}
$$

Crux: $E \cong M_{3} \oplus \mathbb{C}$.
Has simple $1 / 2$-page proof, which led to ...

Remainder of this talk

1. Unordered tuples

- Sketch of proof

2. Cycles
3. Unordered words

Remainder of this talk

1. Unordered tuples

- Sketch of proof

2. Cycles
3. Unordered words

Result 1: unordered tuples

Result 1: unordered tuples

Unordered n-tuples of d-level systems

$$
\bigoplus_{\lambda \in Y_{n, d}} M_{m_{\lambda}}
$$

Result 1: unordered tuples

Unordered n-tuples of d-level systems

$$
\bigoplus_{\lambda \in Y_{n, d}} M_{m_{\lambda}}
$$

where $Y_{n, d}$ denotes the n-block Young diagrams

Result 1: unordered tuples

Unordered n-tuples of d-level systems

$$
\bigoplus_{\lambda \in Y_{n, d}} M_{m_{\lambda}}
$$

where $Y_{n, d}$ denotes the n-block Young diagrams of height at most d

Result 1: unordered tuples

Unordered n-tuples of d-level systems

$$
\bigoplus_{\lambda \in Y_{n, d}} M_{m_{\lambda}}
$$

where $Y_{n, d}$ denotes the n-block Young diagrams of height at most d and m_{λ} the dimension

Result 1: unordered tuples

Unordered n-tuples of d-level systems

$$
\bigoplus_{\lambda \in Y_{n, d}} M_{m_{\lambda}}
$$

where $Y_{n, d}$ denotes the n-block Young diagrams
of height at most d and m_{λ} the dimension of the corresponding representation of $\mathrm{GL}(d)$.

Result 1: unordered tuples

Unordered n-tuples of d-level systems

$$
\bigoplus_{\lambda \in Y_{n, d}} M_{m_{\lambda}}
$$

where $Y_{n, d}$ denotes the n-block Young diagrams of height at most d and m_{λ} the dimension of the corresponding representation of $\mathrm{GL}(d)$. Or explicitly: $Y_{n, d}=\left\{\lambda ; \lambda \in \mathbb{N}^{d} ;\left[\begin{array}{c}\lambda_{1} \geq \ldots \geq \lambda_{d} \geq 0 \\ \lambda_{1}+\ldots+\lambda_{d}=n\end{array}\right\}\right.$

Result 1: unordered tuples

Unordered n-tuples of d-level systems

$$
\bigoplus_{\lambda \in Y_{n, d}} M_{m_{\lambda}}
$$

where $Y_{n, d}$ denotes the n-block Young diagrams of height at most d and m_{λ} the dimension of the corresponding representation of $\mathrm{GL}(d)$. Or explicitly: $Y_{n, d}=\left\{\lambda ; \lambda \in \mathbb{N}^{d} ;\left[\begin{array}{c}\lambda_{1} \geq \ldots \geq \lambda_{d} \geq 0 \\ \lambda_{1}+\ldots+\lambda_{d}=n\end{array}\right\}\right.$ and $m_{\lambda}=\prod_{1 \leq i<j \leq d} \frac{\lambda_{i}-\lambda_{j}+j-i}{j-i}$.

Examples

Examples

Unordered triple of qutrits

Examples

Unordered triple of qutrits $\quad M_{10} \oplus M_{8} \oplus \mathbb{C}$

Examples

Unordered triple of qutrits $M_{10} \oplus M_{8} \oplus \mathbb{C}$ Unordered pair of ququads

Examples

Unordered triple of qutrits $M_{10} \oplus M_{8} \oplus \mathbb{C}$ Unordered pair of ququads $M_{10} \oplus M_{6}$

Examples

Unordered triple of qutrits $M_{10} \oplus M_{8} \oplus \mathbb{C}$ Unordered pair of ququads $M_{10} \oplus M_{6}$ Unordered quad of qubits

Examples

Unordered triple of qutrits $M_{10} \oplus M_{8} \oplus \mathbb{C}$ Unordered pair of ququads $M_{10} \oplus M_{6}$ Unordered quad of qubits $\quad M_{5} \oplus M_{3} \oplus \mathbb{C}$

Examples

Unordered triple of qutrits $M_{10} \oplus M_{8} \oplus \mathbb{C}$ Unordered pair of ququads $M_{10} \oplus M_{6}$ Unordered quad of qubits $\quad M_{5} \oplus M_{3} \oplus \mathbb{C}$

Proof, setting up

Proof, setting up

S_{n} acts on $\mathrm{H}=\left(\mathbb{C}^{d}\right)^{\otimes n}$ in the obvious way.

Proof, setting up

S_{n} acts on $\mathrm{H}=\left(\mathbb{C}^{d}\right)^{\otimes n}$ in the obvious way. Also on $B(H)$ by $\bar{\pi}(a)=\pi^{-1} a \pi$.

Proof, setting up

S_{n} acts on $\mathrm{H}=\left(\mathbb{C}^{d}\right)^{\otimes n}$ in the obvious way.
Also on $B(H)$ by $\bar{\pi}(a)=\pi^{-1} a \pi$.
We wish to compute their equalizer

Proof, setting up

S_{n} acts on $\mathrm{H}=\left(\mathbb{C}^{d}\right)^{\otimes n}$ in the obvious way.
Also on $B(H)$ by $\bar{\pi}(a)=\pi^{-1} a \pi$.
We wish to compute their equalizer

$$
E=\left\{a ; a \in B(H) ; \pi^{-1} a \pi=a \forall \pi \in S_{n}\right\}
$$

Proof, crucial observation

Proof, crucial observation

$$
\begin{aligned}
E & =\left\{a ; a \in B(H) ; \pi^{-1} a \pi=a \forall \pi \in S_{n}\right\} \\
& =\operatorname{Rep}_{S_{n}}(H, H)
\end{aligned}
$$

Proof, crucial observation

$$
\begin{aligned}
E & =\left\{a ; a \in B(H) ; \pi^{-1} a \pi=a \forall \pi \in S_{n}\right\} \\
& =\operatorname{Rep}_{S_{n}}(H, H)
\end{aligned}
$$

The equalizer coincides with the representation endomorphisms of H !

Proof, basic representation theory

Proof, basic representation theory

$$
H=\left(\mathbb{C}^{d}\right)^{\otimes n} \cong \bigoplus_{\lambda} U_{\lambda}^{m \lambda}
$$

where U_{λ} distinct irreducible representations.

Proof, basic representation theory

$$
H=\left(\mathbb{C}^{d}\right)^{\otimes n} \cong \bigoplus_{\lambda} U_{\lambda}^{m_{\lambda}}
$$

where U_{λ} distinct irreducible representations.
Schur's lemma:

$$
\operatorname{Rep}\left(U_{\lambda}, U_{\mu}\right)= \begin{cases}\mathbb{C} & \mu=\lambda \\ 0 & \mu \neq \lambda\end{cases}
$$

Proof, putting it together

Proof, putting it together

$$
E=\operatorname{Rep}_{S_{n}}(H, H)
$$

Proof, putting it together

$$
\begin{aligned}
E & =\operatorname{Rep}_{S_{n}}(H, H) \\
& \cong \bigoplus_{\lambda, \mu} \operatorname{Rep}_{S_{n}}\left(U_{\lambda}^{m_{\lambda}}, U_{\mu}^{m_{\mu}}\right)
\end{aligned}
$$

Proof, putting it together

$$
\begin{aligned}
E & =\operatorname{Rep}_{S_{n}}(H, H) \\
& \cong \bigoplus_{\lambda, \mu} \operatorname{Rep}_{S_{n}}\left(U_{\lambda}^{m_{\lambda}}, U_{\mu}^{m_{\mu}}\right) \\
& \cong \bigoplus_{\lambda} M_{m_{\lambda}}
\end{aligned}
$$

Proof, putting it together

$$
\begin{aligned}
E & =\operatorname{Rep}_{S_{n}}(H, H) \\
& \cong \bigoplus_{\lambda, \mu} \operatorname{Rep}_{S_{n}}\left(U_{\lambda}^{m_{\lambda}}, U_{\mu}^{m_{\mu}}\right) \\
& \cong \bigoplus_{\lambda} M_{m_{\lambda}}
\end{aligned}
$$

What are the irreducible representations U_{λ} and their multiplicities m_{λ} ?

Proof, putting it together

$$
\begin{aligned}
E & =\operatorname{Rep}_{S_{n}}(H, H) \\
& \cong \bigoplus_{\lambda, \mu} \operatorname{Rep}_{S_{n}}\left(U_{\lambda}^{m_{\lambda}}, U_{\mu}^{m_{\mu}}\right) \\
& \cong \bigoplus_{\lambda} M_{m_{\lambda}}
\end{aligned}
$$

What are the irreducible representations U_{λ} and their multiplicities m_{λ} ?
Answer is given by Schur-Weyl duality.

1. Unordered tuples

- Sketch of proof

2. Cycles
3. Unordered words

3-cycle

3-cycle

A 3-cycle of bits is a 4dit:

3-cycle

A 3-cycle of bits is a 4dit:
\{000,

3-cycle

A 3-cycle of bits is a 4dit:
$\{000,001=010=100$,

3-cycle

A 3-cycle of bits is a 4dit:
$\{000,001=010=100,011=101=110$,

3-cycle

A 3-cycle of bits is a 4dit:
$\{000,001=010=100,011=101=110,111\}$

3-cycle

A 3-cycle of bits is a 4dit:
$\{000,001=010=100,011=101=110,111\}$
What about a 3-cycle of qubits?

3-cycle

A 3-cycle of bits is a 4dit:
$\{000,001=010=100,011=101=110,111\}$
What about a 3-cycle of qubits?
($=$ coequalizer of obvious action of C_{3} on $B\left(\mathbb{C}^{2} \oplus \mathbb{C}^{2} \oplus \mathbb{C}^{2}\right)$.)

Quantum 3-cycle

Quantum 3-cycle

$M_{4} \oplus M_{2} \oplus M_{2}$

Quantum 3-cycle

$M_{4} \oplus M_{2} \oplus M_{2}$

- $|001\rangle+|010\rangle+|100\rangle$

Quantum 3-cycle

$M_{4} \oplus M_{2} \oplus M_{2}$

- $|001\rangle+|010\rangle+|100\rangle$
- $|001\rangle+e^{\frac{2 \pi i}{3}}+|010\rangle e^{\frac{4 \pi i}{3}}|100\rangle$

Quantum 3-cycle

$M_{4} \oplus M_{2} \oplus M_{2}$

- $|001\rangle+|010\rangle+|100\rangle$
- $|001\rangle+e^{\frac{2 \pi i}{3}}+|010\rangle e^{\frac{4 \pi i}{3}}|100\rangle$
- $|001\rangle+e^{\frac{4 \pi i}{3}}+|010\rangle e^{\frac{2 \pi i}{3}}|100\rangle$

Arbitrary cycles

Arbitrary cycles

Schur-Weyl does not apply.

Arbitrary cycles

Schur-Weyl does not apply. How to compute multiplicities?

Arbitrary cycles

Schur-Weyl does not apply. How to compute multiplicities?
By computing the character table.

Result 2: arbitrary cycles

Result 2: arbitrary cycles

$$
m_{k}=\sum_{0 \leq j<n} e^{\frac{2 \pi i j k}{n}} d^{\operatorname{gcd}(j, n)}
$$

Result 2: arbitrary cycles

$$
m_{k}=\sum_{0 \leq j<n} e^{\frac{2 \pi i j k}{n}} d^{\operatorname{gcd}(j, n)}
$$

With some number theory:

Result 2: arbitrary cycles

$$
m_{k}=\sum_{0 \leq j<n} e^{\frac{2 \pi j j k}{n}} d^{\operatorname{gcd}(j, n)}
$$

With some number theory:

$$
m_{k}=\frac{1}{n} \sum_{\ell \mid n} d^{\frac{n}{\ell}} \mu\left(\frac{\ell}{\operatorname{gcd}(\ell, k)}\right) \frac{\phi(\ell)}{\phi\left(\frac{\ell}{\operatorname{gcd}(\ell, k)}\right)}
$$

1. Unordered tuples

- Sketch of proof

2. Cycles
3. Unordered words

Result 3: quantum unordered words

Result 3: quantum unordered words

$\prod_{n} S_{n}$ acts on $B\left(\bigoplus_{n}\left(\mathbb{C}^{d}\right)^{\otimes n}\right)$.

Result 3: quantum unordered words

$\prod_{n} S_{n}$ acts on $B\left(\bigoplus_{n}\left(\mathbb{C}^{d}\right)^{\otimes n}\right)$.
With care we can compute the coequalizer:

Result 3: quantum unordered words

$\prod_{n} S_{n}$ acts on $B\left(\bigoplus_{n}\left(\mathbb{C}^{d}\right)^{\otimes n}\right)$.
With care we can compute the coequalizer:

$$
B\left(\ell^{2}\right) \oplus \prod_{\lambda \in Y^{*}} M_{m_{\lambda}} .
$$

Y^{*} : Young diagrams of height at least 2.

Recap

1. Algebras for unordered types are given by coequalizers.

Recap

1. Algebras for unordered types are given by coequalizers.
2. They are more interesting than expected.

Recap

1. Algebras for unordered types are given by coequalizers.
2. They are more interesting than expected.
3. Representation theory of finite groups is a perfect fit to study them.

Thanks!

Thanks!

Questions?

