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We study the sequential productGNOLGG02,GG05 = the
operation p * ¢ = /pq,/p on the set of effects, [0, 1],
of a von Neumann algebra « that represents sequen-
tial measurement of first p and then ¢. In®"%® Gudder
and Latémoliere give a list of axioms based on physical
grounds that completely determines the sequential prod-
uct on a von Neumann algebra of type I, that is, a von
Neumann algebra () of all bounded operators on
some Hilbert space 4. In this paper we give a list of ax-
ioms that completely determines the sequential product
on all von Neumann algebras simultaneously, see Thm 4.

These axioms may be formulated in purely categori-
cal terms (although we do not pursue this here, see also
Remark 12). In this way this paper contributes to the
larger program?’2c15,CIWWISh,CIWWIda 4 jdentify struc-
ture in the category of von Neumann algebras with com-
pletely positive normal linear contractions to interpret
the constructs in a programming language designed for a
quantum computer: with the sequential product one can
interpret measurement.C?WW15b,CJWW15a

Our axioms for the sequential product are based on the
following observations. Given a von Neumann algebra o/
and p € [0,1]., the expression ,/pa,/p makes sense for
all @ € & (and not only for a € [0,1]/). The resulting
map asrty,: &/ — o (so asrt,(a) = \/pa,/p) factors as

w: a—[pla[p] c: a—>/pa./p

o [pl< [p] =

where [p] is the least projection above p.

(Roughly speaking, the von Neumann algebra [p]<7[p]
represents the subtype of &/ in which the predicate p
holds. The map c is simply the restriction of asrt,
to [p]</[p], while 7 is the map which forgets that p
holds. The map c is a more sharply typed version of se-
quential product than asrt,, — much in the same way that
the absolute value on the reals is more sharply described
as a map R — [0,00) than as a map R — R.)

The maps c and 7 have a universal property: cis a com-
pression of p and m is a corner of [p]| (see Definition 2).
Our first axiom for the sequential product (p,q) — p*gq
will be that p % (—) = 7 o ¢ where 7 is a corner of [p]
and ¢ is a compression of p. Somewhat to our surprise,
while 7 and ¢ are unique up to unique isomorphism, the
composition 7 o ¢ is not uniquely determined. To mend
this problem, we add three more axioms.
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Terminology 1. Although we assume the reader is fa-
miliar with the basics of the theory of von Neumann alge-
bras,52%"! we have included the relevant definitions and
a selection of useful results in the appendix.

For brevity, a linear map between von Neumann al-
gebras, which is normal, completely positive, and con-
tractive, will be called a process. (This generalizes
the standard notion of quantum process between finite-
dimensional Hilbert spaces to von Neumann algebras.)

Definition 2. Let &/ and % be a von Neumann algebras,
and let p € & with 0 < p <1 be given.

1. A map ¢: ¥ — & is a compression of p if ¢ is
a process with ¢(1) < p, and ¢ is final among such
maps in the sense that for every von Neumann alge-
bra % and process f: # — o with f(1) < p there
is a unique process f: % — € such that é¢o f = f.

2. Amap 7: &/ — % is a corner of p if 7 is a process
with 7(p) = 7(1), and 7 is initial among such maps
in the sense that for every von Neumann algebra %

and process g: &/ — % with g(p) = g(1) there is a
unique process g: € — % with gom = g.

Definition 3. An abstract sequential product is
a family of operations %: [0,1]o % [0,1]os — [0, 1],
where &/ ranges over all von Neumann algebras, which
obeys the following axioms.

Ax.1 For every von Neumann algebra o/ and p € [0,1] o,
there is a compression ¢: € — & of p, and corner
7: o/ — € of [p] such that for all ¢ € [0,1],

pxq = &(7(q)).
Ax2px(p*q) = (p*p) * q for every von Neumann
algebra o and all p,q € [0,1] .

Ax.3 f(p*xq) = f(p)*f(q) for every multiplicative process
f: 9 — P and all p,q €0,1].

Ax.4 For every von Neumann algebra &7 and p € [0, 1],
and projections e, e € &,

pxer < 1—eg <~ pxey < 1—eq.

Let us formulate the main result of this paper.
Theorem 4. The sequential product, x, given by
p*q = /pa/p

for every von Neumann algebra o7 and p,q € [0,1] o, is
the unique abstract sequential product (see Definition 3).

The proof of Theorem 4 spans the length of this paper.



I. CORNERS

Proposition 5. Let o/ be a von Neumann algebra, and
let p€[0,1]y. Then n: o — |p||p|, a— |pla|p]| is
a corner of p.

Proof. Note that |p|</|p| is a von Neumann subalge-
bra of &7 (with unit |p]) by Corollary 42. Let us show
that 7 is a process. To begin, 7 is normal and com-
pletely positive, because the map & — &, a+— |p|a|p]
is normal and completely positive by Lemma 41. Fur-
ther, since |[p|| < 1, we have [|m(a)| = ||lp)alp]]l <
Illp]l1llall < |lal|, for all @ € &7, and so 7 is contractive.
Hence 7 is a process. Further, 7(1) = |p] = [p|plp| =
m(p) by Proposition 43.

To prove that 7 is a corner of p it remains to be
shown that 7 is initial in the sense that for every pro-
cess g: & — % with g(p) = g(1) there is a unique pro-
cess g: |p||p| = B with gorm =g.

(Uniqueness) Let g1,G2: |p|</|p| — % be processes
with g o™ = g = g2 o m. We must show that g; = go.

Let a € |p]<|p| be given. Then a = |plalp] = 7(a),
and 50 §1(a) = g1(m(a)) = g(a). Similarly go(a) = g(a),
and so g1(a) = g2(a). Hence §; = go.

(Ezistence) To begin, we will prove that g(1—[p]) = 0.
Since 1 — |p| = [1—p] is the supremum of 1 —p <
(1—p)/> < (1—p)7* <--- (see Proposition 43) and g is
normal, it suffices to show that

g((1=p)"*") =0

Note that g(1 —p) = 0, so to prove (1) it suffices to show
that g(a) = 0 entails g(a/?) = 0 for all @ € & with
a > 0. Since g is 2-positive, we have (by Theorem 54),
for all b,c € &,

lg@®*e)lI* < llg bl lg(c c)ll- (2)

In particular, for a € &7, , we have

lg(a”)I* <l lg(a)ll.

So g(a) = 0 entails ||g(a/?)||> = 0, and g(a'?) = 0.
Thus ¢g(1 — |p]) =0.

Recall that |p|</|p| is a von Neumann subalgebra
of 7. Let j: |p|</|p| — <7 be the inclusion. Then j is a
normal contractive x-homomorphism, and thus a process.

Define g:=goj: |p||p|] — B. Then g is a process.
To complete the proof, we must show that gom = g, that
is, g(|plalp]) = g(a) for all a € &7.

Let a € o be given. We show that ¢g(|p]a) = g(a). By
the Cauchy—Schwarz inequality for 2-positive maps (see
Statement (2)), we have,

lg((@ = lpDa)* < llg@ = [p)Il lg(a*a)ll.

Since g(1—|p|) = 0, we have ||g((1—|p])a)||* < 0, and so
0=g((1—lp))a) = g(a) —g(lp]a). Thus g(a) = g(|p]a).

for all n e N. (1)

Similarly, g¢g(a) = g(alp]) and so g(w(a)) =
g9(lpJalp]) = g(lpla) = g(a) for all a € &7.
Hence 7 is a corner for p. O

Il. COMPRESSIONS

Proposition 6. Let o/ be a von Neumann algebra, and
let p € [0,1]7. Then c: [ple/[p] = &, a — \/pa/p is
a compression of p.

Proof. Note that [p]<Z[p] is a von Neumann subalgebra
of & with unit [p] (see Corollary 42). Since therefore
the inclusion [p]</[p] — & is a process, and the map
a — \/pa/p: & — o is a process (see Lemma 41), it
follows that c is a process. Further, note that ¢(1) = p <
.
To prove that ¢ is a compression it remains to be shown
that ¢ is final in the sense that for every von Neumann
algebra % and process f: % — &/ with f(1) < p there
is a unique f: & — [p]</[p] such that f =co f.
(Existence) Note that if \/p is invertible in &7, then we
can define f: % — [p|.«/[p] by, for all b € A,

Fo) = VB fb)p

and this does the job. Also, if \/p is pseudoinvertible —
q/P = /Pq = [p] for some q € &/ —, then f can be
defined in a similar manner. However, p might not be
pseudoinvertible.N°t? Therefore, we will instead approxi-
mate the (possibly non-existent) pseudoinverse of /p by
a sequence qi, ¢a, - - . in &/ — much in the same way that
an approximate identity in a C*-algebra approximates a
(possibly non-existent) unit —, and define, for b € A,

f(b) = uwlimg, f(b)gy. (3)
n— oo

By the Spectral Theorem (see Thm. 38 and Thm. 36),
we may assume without loss of generality that o
is a von Neumann subalgebra of the bounded opera-
tors B(L?(X)) on the Hilbert space L?(X) of square-
integrable functionsN°** on some measure space X, and
that there is a real bounded integrable function p on X
such that, for all f € L?(X),

p(f) = /ﬁ-fdu-

Let p: L*°(X) —  be given by o(g)(f) = [ f-gdu for
all g € L=(X) and f € L?(X), where L>(X) is the von
Neumann algebra of bounded measurable functionsNote
on X. Then p is an injective normal *-homomorphism,

and o(p) = p.
Note that v/p might not be pseudoinvertible in L>(X),
because the function ¢ : X — R given by for x € X,

oy ple)T2 i p(x) £ 0
ale) = {0 if p(z) = 0.

might not be (essentially) bounded. Nevertheless, v/p -
1, has ¢-1¢, as pseudoinverse in L>°(X), where

Qn = {z€X:p(a)>1n} = p~ ((Yn,1]).



Define ¢, = (G - 1¢,,) for all n € N.

Let b € % be given. We want to define f(b) b
Equation (3), but for this, we must first show that
(qn (D) gn)n converges ultraweakly. It suffices to show
that (gn f(b) ¢n)n is norm bounded, and ultraweakly
Cauchy (see Proposition 40).

We only need to consider the case that b € [0,1]5
Indeed, any b € A can written as

b = ||b]| (by — bz + ibs — iby), (4)

where b; € [0,1] %, and if (g5, f(b;) gn)n converges ultra-
weakly for each ¢, then so does (¢, f(b) gn)n-

Let n € N be given. Since f(b) § f(1) < p,
we have g, f(0)n < @npgn. Since g = 0(q - 1q,),
p = o(p), and § - 1o, is the pseudoinverse of \/p - 1¢,,
we get ¢, pgn = 0(1g,) < 1, and so g, f(b) g, < 1.
Hence ||gn f(b) qn]| < 1, and so (g f(b) gn)n is norm
bounded.

Let ¢: &/ — C be a normal state. To prove
that (gn f(b) gn)n is ultraweakly Cauchy, we must show
that (¢(gn f(b) gn))n is Cauchy.

For brevity, define for n > m > 0,

Sn,m = ﬁ_l((l/ml/m])
Seo,m = PH((0,Y/m])

Snom = 0(q-1s, )

Note that S, 1 = @, and s,1 = ¢,. (We have not de-

fined $oo,m = 0(4 - 1s.. ,,), because ¢ - 1g_ ,, might not
be bounded.) Note that
Sn,m\/ﬁ = \/ZBSn}m = Q(lsn,m)' (5)

Let 0 < m < n be given. Since (1/n,1] is the disjoint
union of (1/n,1/m] and (Y/m, 1], @, is the disjoint union
of Sy m and @, and g, = Sp,m + Gm, and

dn f(b) dn — dm f(b) dm
= Sn,m f(b) Snym T+ Sn,m f(b) dm + qm f(b) Sn,m-
Thus,
[ o( qn F() @n = m F(D) g ) |

< le(Snm f(0) snm)| + [0(snm f(0) @m)|  (6)
+ |o(gm f(b) 5n,m)|

Note that for k < £ and m < n, we have

|@(S€,kf(b)8n,m) |2

— o (VF®)ser)* ?

FO)snm )|

< @(sek f(0) se.k) @(8n,m f(b) $n,m) by Ineq. (D1)

< w(sekpSer) P(SnmPSnm) since f(b) <p
= ¢(o(1s,,)) ¢lo(1s,.,.)) by Eq. (5)

< ¢(o(1s,,.)) aslg,, <1

< plo(1s.,.)) as Spm C Soo,m

Thus using Eq. (6) and ¢, = s,,,1 we get the bound

[o(an F(B) an — am f(b) gm )| < 34/@(e(1s..,.))- (7)

Since (0,1] 2 (0,t/2] 2 (0,1/3] D --- and ),,(0,1/m] = &,
we have S 1 D Se2 2 ... and (), Soo,m = &. Then
inf,, 15, =0, and so mfm v(o(1s.. ,,)) =0, because g
and ¢ are normal Thus (¢(o(1s.. ,.)) )m converges to 0,
and so (y/¢(o(1s.. ,,)) )m converges to 0 as well.

Let € > 0 be given. There is N € N such that for
alln > N, we have \/¢(o(1s,, ,,)) < ¢/3. Then given n >
m > N, we have, by Equation (7),

- me(b)Qm )| S €. (8)

Hence (¢nf(b)gn)n is ultraweakly Cauchy and norm
bounded, and must therefore converge ultraweakly. We
may now (and do) define f(b) as in Equation (3).

Thus, (¢nf(—)gn)n converges coordinatewise ultra-
weakly to f. Note that the number N related to In-
equality (8) depends on ¢ and ¢, but does not depend
on b. It follows that on [0, 1]z the sequence (gn f(—)qn)n
converges uniformly ultraweakly to f.

It is easy to see that f is linear and positive. It remains
to be shown that f is contractive, normal, completely
positive, co f = f, and f(%) C [p].<[p].

(f(#) C [pl</[p]) Let b € & be given. We must show
that f(b) € [p]</[p]. By writing b as in Equation (4),
the problem is easily reduced to the case that b € [0, 1]

Let n € N be given. Since b < 1, we have f(b) <
f(l) < p, and so QHf(b)qn < @nPgn = Q(]-Qn) =
o(1s_,). Since p~'((0,1]) = Sw,1, and it is
not hard to see that 1;-1(,1)) is the support of p
in L*(X), it follows that o(1s_,) = [p] (see Propo-
sition 46). Thus ¢,f(b)g, < [p] for all n, and
so f(b) = uwlimy, ¢, f(b)g, < [p]. Corollary 28, gives
us [p] £(5)[p] = 7(5), and 5o F(b) & [pl/[p]. _

(f is contractive) Tt suffices to show that f(1) < 1.
Let n € N be given. Since f(1) < p, we have

anf(1)an

Thus f(1) = uwlim,, ¢, f(1)g, < 1.
= f) Let b € [0,1]. It suffices to show
= f(b). Since ¢ is normal, we have

lo( qn f(D) gn

< gupgn = o0(1g,) < 1.

e(F1) = uwlim y/Fan F(b) an/F.

Thus we must show that (/pg, f(b)
ultraweakly to f(b).

Let n € N be given. On the one hand we have |/pg, =
0(1q,) = o(1s, ) by definition of ¢,,. On the other hand
we have [p]f(b)[p] = f(b) and [p] = o(1s.,). Thus,
using 15, = 15, +1s, ,, and writing ex ¢, = 0(1s, ,),
we have

f(b) = /Pgn f(b) an/P
= €oco,n f(b) €co,n + €n,1 f(b) €oo,n (9)
+ 6oo,n f(b) en,l

qn+/D )n converges



So to show that (/pgn f(D)Gn\/P)n converges ultra-
weakly to f(b), it suffices to show that the terms on the
right-hand side of Equation (9) converge ultraweakly to 0.
Let ¢: &7 — C be a normal state. Then

lo(en f(b eoo,n)|2

= |@((m€n 1)” mew,n)F

< @len,1f(b)en1) - oleco,nf(b)eson) by Ineq. (D1)
< plen ) * p(eso,n) since f(b) <1
< pleson) since e, 1 < 1.

Recall that p(en,00) = ¢(0(1s,, ,,)) converges to zero (be-
cause [, Seo,n = D). It follows that (en1f(b)escn )n
converges ultraweakly to 0.

By a similar reasoning, (€conf(b)en1)n and
(ecomnf(b)econ )n converge ultraweakly to 0.  Thus,
by Equation (9), (/Pqn f(b)@n\/P)n converges ultra-
weakly to f(b). Thus co f = f.

(f is normal) Since (¢nf(—)@n)n converges uniformly
ultraweakly on [0, 1] to f, and each g, f(—)gy is normal
(by Lemma 41), it follows that f is normal (by Corol-
lary 49).

(f is completely positive) Since (g, f(—)gn)n converges
coordinatewise ultraweakly to f, and each g, f(—)q, is
completely positive (see Lemma 41), it follows that f is
completely positive (by Corollary 51).

(Uniqueness) Let g: B — [p|l</[p] be a process
with co g = f. We must show that g = f.

Let b € [0, 1] be given. It suffices to show that f(b) =
g(b). We have \/pg(b)\/p = f(b). Let n € N be given.
We have en19(b)ent = qn/P9(0)\/Pan = qnf(b)an
since ¢,/p = 0o(ls,,) = en1. On the one hand
(@n f(b)qn)n converges ultraweakly to f(b) by definition
of f(b). On the other hand (e, 19(b)en 1)n converges ul-
traweakly to g(b) as one can see with tricks that were
used before. Hence f(b) = g(b). O

Il. EXISTENCE

To show that the sequential product is an abstract se-
quential product, we use the following result, which (we
think) is interesting in itself.

Lemma 7. Let a be an element of a von Neumann alge-
bra (or a unital C*-algebra) o/ with a*a < 1. Then for
projections ey, eq € o the following are equivalent.

1. a*e1a <1—e9
2. aeqa* <1—¢
3. ejaes =0
4. eaa*e; =0

Proof. (1= 3) We must show that e;aes = 0. It suffices
to show ega*ejaes = 0, because |lejaes|? = ||exa*eraes|

by the C*-identity. Since 0 < a*eja < 1 — e, we have
0 < esa*ejaes < ex(l —es)es =0, and so exa*ejaes = 0.
(8 = 1) Since ejaey = 0, also eya = eja(l — ez), and
a*e; = (1—ez)a*e;. Then a*era = (1—e2)a*era(l—es) <
1 — ey, because a*eja < a*a < 1.
(4 <= 2) follows by the same reasoning as 1 < 3.
(8 < /) follows by applying (—)*. O

Proposition 8. The sequential product * (which is given
by p* q = \/Dq/D) is an abstract sequential product.

Proof. (Az.1) Let &/ be a von Neumann algebra, and
let p,q € [0,1] 4. Since [p],/p = \/p (by Prop. 43),

Vpeayp = plplalplyp = c(p(q)),

where mp: & — [p|.</[p] is the corner of [p] from Propo-
sition 5, and c: [p]&/[p] — < is the compression of p
from Proposition 6. Thus * obeys Ax.1.

The proof of (Az.2) and (Az.8) is easy, and (Ax. 4)
follows from Lemma 7.

b*xq =

IV. UNIQUENESS

We will need the following fact later on.

Lemma 9. Let f,g: V. — W be linear maps between
complex vector spaces. Assume that for every v € V,
there is an o € C\{0} with f(v) = a - g(v).

Then there is ag € C\{0} with f = ag - g.

Proof. For the moment, assume f and g are injective.
If V.= {0}, then ap = 1 works, so assume V # {0}.
Pick any v € V with v # 0. Let ap € C\{0} be such
that f(v) = ag - g(v). Let w € V. We have to show that
fw) = ag - g(w). Now, either g(v) and g(w) are linearly
dependent or not.

Suppose that g(v) and g(w) are linearly independent.
Let 8 € C\{0} be such that f(w ) g(w), and let v €
C\{0} be such that f(v+w) = (v + w). Then

(v —ao) - g(v) + (’Y—ﬁ)-g(w) = 0.

By linear independence, we have 7 — ag = 0 = v — 5.
Hence ap = 8, and so f(w) = ap - g(w).

Suppose that g(v) and g(w) are linearly dependent.
As v # 0 and ¢ is injective, we have g(v) # 0.
Thus g(w) = g-g(v) for some g € C. Then g(w—p-v) =0,
and so w = g - v, since g is injective. We have

flw) = o0 fv) = 0-ap-gv) = ap-g(w).

Thus we have f(w) = apg(w) whether g(v) and g(w)
are linearly dependent or not.

We now return to the general case in which f and g
might not be injective. Note that the kernels of f and g
coincide, and so, writing N = ker f = ker g, there are
unique ¢,s: V/N — W such that sog= f and tog=g,
where ¢: V' — V/N is the quotient map. Clearly, s and ¢
are injective, and for every v € V/N there is « € C\{0}
with s(v) = a - t(v). Thus, by the previous discussion,
there is ag € C\{0} with s = g -t. Then f=ap-g. O



Proposition 10. For any abstract sequential product, *,
we have p * ¢ = \/pq+/p, where p,q € [0,1]7 and <7 is a
von Neumann algebra.

Proof. Let o be a von Neumann algebra, and p € [0,1] .
By Ax.1 there is a corner 7 of [p] and a compression ¢é
of p such that p % ¢ = &(7(q)) for all g € [0,1] .

Let ¢: [p|«/[p] — & be the compression of p given
by c(a) = \/pa./p foralla € [p].e/[p] (see Proposition 6).
Since both ¢ and ¢ are compressions of p it is easy to see
that there is an invertible process ¥ such that ¢ = co .
In fact, ¥ is a *-isomorphism by Corollary 47.

Similarly, 7 = x o w where x is some *-isomorphism Y,
and 7: & — [p|</[p] is the corner of [p] given
by m(a) = [pla[p] for all a € & (see Proposition 5).

Thus p * ¢ = /p([plelp])/p for all ¢ € [0,1],
where ¢ = 1 o y is a *-automorphism of [p].</[p].

Roughly speaking, our goal is to prove ¥ = id.
We will first consider the case that & = B(J).
Since [p]B(H)[p] is a type I factor (i.e. *-isomorphic
to %(¢) for some Hilbert space #), it is known¥ap52
that v must be an inner *-automorphism, that is, there
is a unitary u € [p|B(H)[p] such that ¢¥(a) = u*au
for all a € [p|B(H)[p]. Note that [plu = u since u €
[p|%(A)[p]. Thus we have, for all b € [0, 1] (),

pkb = /pubu,/p. (10)

We aim to show that u = 1, or at least that u = al for
some « € C with |a| = 1.

Our first step is to prove that up = pu. To this end, we
extract some information about u from Ax.4. First, note
that for vectors v, w € 4 with |w| =1 and |jv|| <1,

)] < 1= fw)(wl

if and only if (v,w) = 0. (11)

For any v € 2 with |jv|| =1,

p¥|v){v| = Vpu"[v){v|uy/p = |VpuTv)(VpuTol. (12)

For all v,w € S with |v|| = ||w|| = 1, the following are
equivalent

(Vpu'v,w) = 0

lVpu'v)(Vpu'v| < 1—|w)(w| by (11)
p*o)(v| < 1—|w)(w| by (12)
p*lwy{w| < 1— |v){v] by Ax.4

(Vpurw,v) = 0
(uy/pv,w) = 0

Thus \/pu*v and u,/pv are orthogonal to the same vec-
tors, and so there is & € C\{0} with

VDUV = - us/pu.

By scaling it is clear that this statement is also true for
all v € A (and not just for v with |jv|| = 1).

Although a priori a might depend on v, we know by
Lemma 9 that there is an o € C\{0} such that ,/pu* =
a - uy/p. It follows that p = \/pu*u,/p = a - u\/pu,/p =
uy/Dy/pu* = upu*, and so pu = up. Then also \/pu =
u4/p (see Corollary 25), and thus \/pu* = au,/p = o/pu.

Note that (y/pu*)* = u\/p, and so u\/p = o*/pu* =
a*au,/p. Thenif u,/p # 0, we get a*a = 1, and if u,/p =
0, we can put a = 1 and still have both /pu* = «a,/pu
and a*a = 1. Tt follows that, for all b € B(7),

c(u*bu) = /pu*bu/p = /pubu®\/p = c(ubu®),

where ¢ is the compression of p from Proposition 6. By
the universal property of ¢ we get u*(—)u = u(—)u*, and
thus u?b = bu? for all b € B(). Hence u? is central
in B(H). Since B(H) is a factor, we get u? = X -1 for
some A € C with |[A\| =1.

Since p commutes with u, we easily get p ¥ p = p2.
Then from Ax.2 it follows that

p’Eq =

(p*p)*q
px(p*q)
VU \/put qus/pu\/p

= pPgp-

Thus, if we repeat the whole argument with p replaced
by /p, we see that p x ¢ = /pq,/D.

Let us now consider the general case in which & may
not be *-isomorphic to () for some Hilbert space 5,
but is instead (without loss of generality) a von Neu-
mann subalgebra of B(#) for some Hilbert space ¢
(see Theorem 36). Let ¢ € [0,1],. Since the inclu-
sion 0: & — (/) is a multiplicative process, we have

o(p * q) = o(p) * o(q) = op)o(a)\/o(p) = o(\/Pa/D)-

Since g is injective, we conclude that pxq = \/pq\/p. U

Proof of Theorem 4. By Proposition 8, the sequential
product  (given by p * ¢ = /pq,/p) is an abstract se-
quential product, and * is the only abstract sequential
product by Proposition 10 O

REMARKS

Remark 11. Gudder and Latémoliere (G&L) showed
inGLo8 that the sequential product on the effects of a
Hilbert space S is the only binary operation % that sat-
isfies the following axioms. For all a,b € [0, 1] (), and
every density operator g on 7,

GL1. tr[(a * 0)b] = tr[o(a % D)];

GL2. ax1=1%a=aq;

GL3. a* (a*b) = (a%a)*b=a?%b, and
GL4. a — a % b is strongly continuous.

Let us compare their proof of uniqueness with our proof
of uniqueness of the abstract sequential product. The
broad strokes are similar: in both proofs it is shown



1. first that p * ¢ = \/pu”qu,/p for appropriate u;
2. then that p? % ¢ = pgp using Ax.4 and GL1 resp.,

3. and finally p ¥ ¢ = /pq,/p is obtained using GL3
and Ax.2 respectively.

However, the short strokes are quite different. For in-
stance, while GL3 and Ax.2 clearly serve the same pur-
pose in both proofs (enabling the third step mentioned
above), the relation between GL1 and its analogue, Ax.4,
is less clear: Ax.4 only comes into play at the second
step, while GL1 is important in both the first and second
steps. Also, the proof of G&L has a branch in the first
step (case iii on page 9 of“%98)  which has no companion
in our proof.

Remark 12. The universal properties of the compres-
sion ¢ (from Proposition 6) and of the corner 7 (from
Proposition 5) may be cast into the following chain of
adjunctions.

JO

&

vN°P

ompressjion

Corner
(pelo, 1]%)'—%17 14/ [p*] (p€[0,1]r ) |p) | p]

Here, vN is the category of von Neumann algebras and
processes, and [ is the functor vN°® — Poset®® given
by O(e7) = [0, 1], and O(f)(p) = f(p)*, and [0
is its Grothendieck completion. Such chains appear in
several other categories and provide a tool to study the
sequential product in other settings (seeCTWW15b),

Remark 13. We have shown that Ax.1, Ax.2, Ax.3, Ax.4
axiomatize the sequential product. A natural question is
whether three of them would have sufficed. We will show
that Ax.1, Ax.2, and Ax.4 cannot be dropped. We do
not know whether Ax.3 is redundant.

(Of course, instead of being dropped, the axioms may
also be weakened. For example, Ax.3 is used only with f
a representation, and Ax.4 is only used with e, es rank
one projections.)

Ax.1 The operation % given by p* g = pgp satisfies Ax.2,
Ax.3, and Ax.4, but not Ax.1.

Ax.2 Observe that if we pick for every effect p on a von
Neumann algebra &/ a unitary wu, from [p]./[p],
then we may form an operation % on all effects by
P * ¢ = \/puyquy/p, which satisfies Ax.1.

Further, note that if u2 = w, for all p, then %
satisfies Ax.2; and if f(u,) = uy for any uni-
tal *-homomorphism f, then % obeys Ax.3; and if
every u, is self-adjoint, then * satisfies Ax.4.

Define u,, by u, = g(p), where g: [0,1] — {—1,1} is
any Borel function with g(2/3) = 1 and g(4/9) = —1.
Then clearly % (defined by u,) satisfies Ax.1, Ax.3,
and Ax.4. Also, % does not satisfy Ax.2, be-
cause for p = (529 ) in My we have u, = (§9),
while u,2 = (§ %), and so (p*p) % q # p* (p*q),

(1

where ¢ = 12 .

Ax.4 Pick a Borel function g: [0,1] — S! such
that g(1/2) # 1 and g(\)? = g(\?) for all X € [0, 1].

Then * given by p * ¢ = /pg(p)* ¢9(p)\/p obeys
Ax.1, Ax.2, and Ax.3, but not Ax.4.

Problem 14. Do Ax.1, Axz.2 and Ax./ imply Axz.3?
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Appendix A: C*-algebras

Terminology 15. 1. A C*-algebra o/ is a complete
normed complex vector space endowed with a bi-
linear associative product and an antilinear map
(=)*: o — & such that a** = a, (ab)* = b*a*,
llab]| < |lal/||b||, and||a*a|| = ||al|? for all a,b € <.

(The last equation is called the C*-identity.)
2. An element a of a C*-algebra 7 is called

(a) positive if a = b*b for some b € &
(b) self-adjoint if a* = a;

(c) a projection if a*a = a;

(d) central if ab = ba for all b € o

(e) aunit if ab="ba =10 for allb € «.

The set of positive elements of o7 is denoted by <7, ,
and the set of self-adjoint elements of &7 by @7,.

3. A C*-algebra is partially ordered by as follows. For
all a,b € o7, we have a < b iff b — a is positive.

4. A C*-algebra & is
(a) unital if &/ contains a unit, 1;
(b) commutative if ab = ba for all a,b €

(c) a factor if . is unital and all its central ele-
ments are of the form A -1 where A € C.

5. Let o/ and % be C*-algebras.
fr o — A is called

A linear map

(a) bounded if || f|| < oo, where
Il = sup{A € [0,00): Va € &[[[f(a)ll < Alla] ]}

(b) contractive if || f|| < 1;

(¢) a *-homomorphism if f(ab) = f(a)f(b) and
fla*) = f(a)* for all a,b € o

(d) a x-isomorphism if f is a bijective *-
homomorphism;

(e) positive if f(a) € A, for all a € o7,

(f) unital if &7 and 2 are unital, and f(1) = 1;

(g) normal if for every directed subset D of self-
adjoint elements of «/: if D has a supre-
mum \/ D in #,, then f(\/ D) is the supre-
mum of {f(d): d € D} in PBea;

(h) a process if f is normal, completely positive
and contractive.

6. Let &7 be a unital C*-algebra. A state of o7 is a
positive unital linear map ¢: &/ — C.

7. A C*-subalgebra of a C*-algebra < is a norm
closed linear subspace S of &7 such that ab € .
and a* € . for all a,b € .. (Such a set .7 is itself
a C*-algebra in the obvious way.)

8. For every positive element a of a C*-algebra o/
there is a unique positive b € &7 with a = b? and
ba = ab. We write \/a = b.

Example 16. Let X be a compact Hausdorff space. The
commutative unital C*-algebra of continuous functions
on X is the set C'(X) of continuous complex-valued func-
tions on X endowed with the supremum norm and coor-
dinatewise operations.

Theorem 17 (Gel'fand-Neumark). Every commutative
unital C*-algebra is x-isomorphic to a C*-algebra of con-
tinuous functions on a compact Hausdorff space.

Proof. Apply Theorem 2.1 of©on90, O

Example 18. Let S be a Hilbert space. The bounded
operators on ¢ form a unital C*-algebra, B(J¢), in
which the product is given by composition, (—)* is the
adjoint, and the norm is the operator norm. Moreover,
PB(H) is a factor (of “type I”), and A € B(H) is posi-
tive iff 0 < (z, Azx) for all x € 2.

A C*-algebra of bounded operators on J is a C*-
subalgebra # () of bounded operators on ¢ (but need
not be a factor).

Theorem 19 (Gel'fand-Neumark-Segal). Every unital
C*-algebra is x-isomorphic to a C*-algebra of bounded
operators on a Hilbert space.

Proof. Unfold Theorem 5.17 of©on90, O

The norm determines the order:

Lemma 20. Let &7 be a unital C*-algebra, and a € ,.
Then a > 0 iff || la]| —a| < |af.

Proof. See VIII/Theorem 3.6 of©°n9%0. O

Proposition 21. Let o/ and % be unital C*-algebras,
and let f: of — B be a unital x-homomorphism.

Then f is contractive, and f(<) is norm closed and
in fact a C*-subalgebra of AB.

Moreover, if f is injective, then, for all a € o, we
have || f(a)l[ = liall, and f(a) >0 iff a > 0.

Proof. Use Theorem VIII/4.8 of©°"% and Lem. 20. O

If we apply the proposition above to the inclusion of a
C*-subalgebra, then we get the following desirable result.



Corollary 22. Let &/ be a unital C*-algebra, and let a
be an element of a unital C*-subalgebra B of o .
Then ||a|ler = |lall@, and a € <, iff a € B

The order also determines the norm:

Corollary 23. Let o/ be a unital C*-algebra. Then

la]] = min{X € [0,00): —A<a<A} (A1)

for any self-adjoint element a of <.

Proof. Note that if &7 = C(X) for some compact Haus-
dorff space, then (A1) is evidently correct, because the
norm on C(X) is the supnorm. Thus, (A1) is also correct
if &7 is commutative, since in that case 2/ is *-isomorphic
to some C(X) by Theorem 17.

In general, however, &/ need not be commutative, but
the C*-subalgebra, C*(a), generated by a is commuta-
tive. Thus, since the order and the norm on C*(a) agree
with the order and norm on & by Corollary 22, (Al)
holds on & (because it holds on C*(a)). O

Example 24. Let &/ be a C*-algebra, and let . be a
subset of @. Then .Y = {a € &/: Vs € . [as = sa]},
the commutant of ., is a C*-subalgebra of <7 provided
that s* € . for all s € .7.

Corollary 25. If an element, a, of a C*-algebra com-
mutes with b > 0, then a commutes with V.

Terminology 26. Let o/ be a C*-algebra (of operators
on a Hilbert space %) and let N € N. By My (&) we
denote the set of N x N-matrices over 7 which is itself
a C*-algebra (of operators on the Hilbert space J#®N).

Let & and #Z be C*-algebras. Let f: &/ — % be a
linear map. We say that f is N-positive if for every
positive N x N-matrix (A4;;);; over & the N x N-matrix
(f(Aij))ij over A is positive in My (Z). fis completely
positive if f is N-positive for all N € N.5ti55

Lemma 27. Let a be an element and p a projection in
a unital C*-algebra &7 . If a*a < p, then ap = a.

Proof. Follows from Lemma 7. O

Corollary 28. Let o/ be a unital C*-algebra. For every
projection p in &/ and a € &/ with 0 < a < p, we have
ap = pa = a.

Corollary 29. Let p,q be projections with p+q < 1 in
a unital C*-algebra. Then pq = qp = 0.

Lemma 30. For an element p of a unital C*-algebra <,
the following are equivalent.

1. p is a projection.

2.a<panda<1-—pentailsa=0 foralla € o, .

Proof. (1=>2) Let a € &7, witha <pand a<1—pbe
given. Since ap = a and a(l — p) = a by Corollary 28,
we get a = ap + a(l — p) = 2a, and so a = 0.

(2=1) We may assume that & is commutative (by
considering the C*-subalgebra generated by {a} instead),
and so & = C(X) for some compact Hausdorff space by
Theorem 17.

Then a € C(X) given by a(z) = min{p(z),1—p(x)} for
all x € X is positive and below both p and 1—p. Thus a =
0 by assumption. Then, for all z € X, either p(z) = 0
or 1 — p(z) = 0. Thus p takes only the values 0 and 1,
and is therefore easily seen to be a projection. O

Corollary 31. Let f: of — B be an invertible posi-
tive unital linear map between unital C*-algebras, such
that =1 is positive. Then f preserves projections.

Appendix B: Von Neumann Algebras

Terminology 32. A von Neumann algebra is a unital
C*-algebra 7 such that: (1) every bounded directed set
of self-adjoint elements of & has a supremum in %;,,
and (II) for every positive a € &: if p(a) = 0 for every
normal state ¢ of o7, then a = 0.K2d%6

A von Neumann subalgebra of a von Neumann al-
gebra o7 is a C*-subalgebra . of o such that for every
bounded directed set D of %, we have \/ D € ., where
\/ D is the supremum of D in @,.

Terminology 33. Let & be a C*-algebra. Given a

net (a;); in & and b € & ,—

1. (a;); converges ultraweakly to b if for every nor-
mal state ¢ of o7,

(p(ai))i

2. and — provided & is a C*-subalgebra of the space
of bounded operators () on a Hilbert space
— (a;); converges weakly to b (with respect to )
if for all x € 2,

((aiz, T));

Example 34. Let % be a Hilbert space. Then #()
is a von Neumann algebra.

Theorem 35 (Kadison). For a C*-algebra of bounded
operators on a Hilbert space, the following are equivalent.

1. o is a von Neumann subalgebra of B(H);
2. o is weakly closed in B(H).

Proof. This follows from Lemma 1 ofad56, O

converges to  ¢(b);

converges to (b, x) .

Theorem 36 (Kadison). Any von Neumann algebra is
x-isomorphic to a von Neumann subalgebra of B(H) for
some Hilbert space ¢ .

Moreover, 7€ can be chosen in such a way that the ul-
traweak topology on < coincides with weak topology on <f
induced by B(H)



Proof. That < is #-isomorphic to a von Neumann al-
gebra of bounded operators on some Hilbert space 7
follows from Theorem 1 off2456  That the ultraweak
topology on &7 coincides with the weak topology on &/
induced by ¢ follows from the way the Hilbert space 7
is constructed in the first paragraph of the proof of The-
orem 1¥2d56 (if we take (wq)aer to be the collection of
all normal states): for every normal state w of &/ there
is x € A with w(a) = (z,az) for all a € &7. O

Example 37. Let X be a measure space. Then the C*-
algebra L>°(X) of bounded measurable complex-valued
functions on X (in which two such functions are identified
when they are equal almost everywhere) is a commuta-
tive von Neumann algebra and the map ¢: L>®(X) —
B(L*(X)) given by o(f)(g) = | fgdu is an injective nor-
mal *-homomorphism, where L?(X) is the Hilbert space
of square integrable complex-valued functions on X (in
which two such functions are identified when they are
equal almost everywhere).

Theorem 38 (Spectral Theorem). For every self-adjoint
bounded operator A on a Hilbert space €, there is a
measure space X, an element a of L>°(X), and a unitary

U: L*(X) — A, such that U*AU = [a- —dpu.
Proof. Seef2163, O

Proposition 39. Let D be a directed bounded set of self-
adjoint elements of a von Neumann algebra < .

Let b € o. If b commutes with all d € D, then b
commutes with \/ D.

Proof. We may assume (by Theorem 36) without loss of
generality that &7 is a von Neumann subalgebra of #(5)
for some Hilbert space J#. Since (d)4ep converges
strongly to \/ D (see Lemma 5.1.4 of“R97) we see that
(bd)aep converges weakly to b(\/ D). Since bd = db for
all d € D, and (db)gep converges weakly to (\/ D)b by a
similar reasoning, we get (\/ D)b = b(\/ D). O

Proposition 40. Let (a;); be a net in a von Neumann
algebra of such that

1. (a;); is norm bounded, that is sup; ||a;|| < oo, and

2. (a;); is ultraweakly Cauchy, that is, (p(a;)); is
Cauchy for every normal state ¢: o/ — C.

Then (a;); converges ultraweakly.

Proof. By Theorem 36, we may assume without loss of
generality that 7 is a von Neumann algebra of bounded
operators on some Hilbert space 57 such that the weak
topology on &/ induced by 4 coincides with the ultra-
weak topology.

Let © € 4 be given. Note that if ||z|] = 1, then
(x,—x) : & — C is a normal state, and so ((x,a;x)); is
Cauchy. It follows easily that ({z,a;z)); is Cauchy for
all z € 2.

Let x,y € 4 be given. Since for all a € o7,

| (z,ay) > < (z,az) (y,ay),

we see that ((z, a;y)); is Cauchy.

Since (z,y) — lim; (z, a;y) gives a bilinear map on 42,
which is bounded because (a;); is norm bounded, there is,
by Riesz’s representation theorem, a bounded operator a
on € with (az,y) = lim; (a,z,y) for all x,y € .

Note that (a;); converges weakly to a. Thus a € 7,
because o7 is weakly closed by Theorem 35. Further,
(a;); converges ultraweakly to a as well, because the weak
and ultraweak topologies coincide on o7 by choice of 7.

O

Lemma 41. Let a be an element of a von Neumann
algebra of . Then the linear map ¢: &/ — </, b — a*ba
is mormal and completely positive.

Proof. (Normality) follows from Lemma 1.7.4 ofS2k71,
(Complete positivity) follows from Theorem 1 of5% but
let us give an elementary proof.

Let N € N be given. Let B be a positive N x N-matrix
over o/. We must show that (a*B;;a);; is a positive N x
N-matrix over /. Since B is positive, there is a N x N-
matrix C' with B = C*C. Note that

(a*Bjja)i; = A*BA = A*C*CA = (CA)*CA >0,

where A = (a);; is a diagonal N x N-matrix. Thus c is
completely positive. O

Corollary 42. For every projection p of a von Neumann
algebra of , pofp is a von Neumann subalgebra of <7 .

Proof. Surely, po/p is a *-subalgebra of &/ with unit p.
Since ||[pap—pbp|| < ||p|||la—"0]|/||p|| for all a,b € &7, we see
that po/p is norm closed, and po/p is a C*-subalgebra.
Let D be a bounded directed subset of (paZp)s.. To
prove that pa/p is a von Neumann subalgebra, it suffices
to show that the supremum \/ D of D in %, is in po/p.
Since a — pap is normal on & by Lemma 41, and
we have d = pdp for all d € D, we see that p(\/ D)p =
Vaeppdp =\ D,andso \/ D € o O

Proposition 43. Let &/ be a von Neumann algebra.
Let a € of with 0 <a <1 be given.

1. There is a smallest projection, [a], above a.
2. [a] is the supremum of a < a'/* < a'/* < a'/* < ---.
3. Then ab = ba implies [a]b = b[a] for allb € A.

Proof. Let p be the supremum of a, a'/?, a'/*, ... in o,.
Let ¢ be a projection in &/ with a < q. Then aqg = qa = a
by Corollary 28, and so a'/?¢ = qa'/*> by Corollary 25.
Since a(1 — ¢) = 0, we have

Va1 = q)l* = [I(1 = g)a(l —q)] =0

by the C*-identity, and so v/a(1—¢) = 0, and thus \/aq =
Vva. Then v/a = vaq* = ¢/ag < q. With a similar



reasoning, we get a’/* < ¢, and a'/® < ¢, and so on. It
follows that p < ¢, by definition of p.

Thus, to show that p is the least projection above a, we
only need to show that p is a projection. Since 0 < p <1
(and thus p? < p) it suffices to show that p < p?.

First note that any b € &/ that commutes with a, com-
mutes with a"/2, and with a”/*, etc., and thus b commutes
with p by Proposition 39.

In particular, since each a'/?" commutes with a, we see
that a'/2" commutes with p. Then, by Lemma 41,

P> = \/pp\/D
=V, vpa’" /b
_ vn RV P PRV

_ 1/t 1/am 1/gnt1
=V, V@ @ g

Thus p? > a'/?" for every k € N, and so p? > p.
Hence p is a projection. O

Proposition 44. Let f: &/ — P be a positive linear
contraction between von Neumann algebras. Let a € o7 .

Then f([a]) < [f(a)], and [f([a])] = [f(a)].

Proof. Since [a] = \/, a'/*" by Proposition 43, and f is
normal, we have

F(lal) = V., 7@ 2 V. 1@ = [f(a)).

To justify Inequality (x) we claim that f(v/b) < /(D)
for all b € %,. Since \/— is order preserving"®d7? it
suffices to show that f(v/0)? < f(v/b?), and this has been
done in Theorem 1 offd52,

Let prove that [f([a])] = [f(a)]. On the one hand,
we have [f([a])] > [f(a)], because [a] > a. On the
other hand, since [ f(a)] is a projection, and we have just

shown that f([a]) < [f(a)], we get [f([a])] < [f(a)]
by definition of [f(a)]. O

Theorem 45 (Gardner). For a positive linear
map f: o — B between unital C*-algebras, the
following are equivalent.

(i) f(1)- f(ab) = f(a)- f(b) for all a,b € o .

(i1i) f is 2-positive, and for all a,b € o/, with ab =0
we have f(a)f(b) = 0.

Proof. See Theorem 2 of 279, O

Proposition 46. For a 2-positive normal unital linear
map f: o — B between von Neumann algebras the fol-
lowing are equivalent.

1. f is a x-homomorphism.

2. f preserves projections.

3. [f(a)] = f([al]) for every a € [0,1]o.
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Proof. (1 = 2) Easy.

(2 = 3) Let a € [0, 1]y be given. By Proposition 44
we have [f(a)] = [f([a])] = f([a]), where the latter
equality follows from the fact that f([a]) is a projection.

(3 = 1) Let a,b € o/ with ab = 0 be given. To
prove that f is multiplicative, it suffices to show that
f(a)f(b) =0 by Theorem 45 (since f(1) =1).

If either a or b is zero, we are done, so we may assume
that a # 0 and b # 0. We may also assume that a,b < 1
(by replacing them by 4/|ja|| and ¥/|jp|| if necessary).

Tt suffices to show that [ f(a)] [ f(b)] = 0, because then
F(@f(b) = F@[f(@)] [F(B)]F(B) = 0, where we used
that f(a) = f(a)[f(a)] (see Proposition 43).

Note that a and b commute, because ba = b*a* =
(ab)* = 0 = ab. Then v/a and Vb commute as well, and
s0 v/aby/a = ab = 0. Then 0 < /a[b]\/a < [aby/a]| =
0, and so a[b] = 0. By repeating this argument, we see
that [a][b] = 0.

It follows that [a] + [b] is a projection, and

[f@)] + [fO)] = f([a]) + f(J6]) < f(1) = L
Thus Corollary 29 implies that [ f(a)] [f(b)] = 0. O

Corollary 47. Let f be an invertible process between
von Neumann algebras such that f =1 is a process as well.
Then f is a x-isomorphism.

Proof. Since f(1) <1 = f(f~1(1)) wehave 1 < f~1(1) <
1, and so f~1(1) = 1. Thus both f and f~! are unital.
Then f preserves projections by Corollary 31, and is thus
a *-homomorphism by Proposition 46.

Hence f is a x-isomorphism. O

Appendix C: Ultraweak limits of maps

Lemma 48. For a positive linear map f: o/ — P be-
tween von Neumann algebras the following are equivalent.

1. f is normal.
2. f is ultraweakly continuous.

3. The restriction of f to a map [0, 1] — A is ultra-
weakly continuous.

Proof. (1 =>2) Let ¢: 8 — C be a normal state. To
prove that f is ultraweakly continuous we must show that
po f:o — C is continuous with respect to the ultra-
weak topology on 7 and the standard topology on C. It
suffices to show that ¢ o f is normal, which indeed it is,
as both ¢ and f are normal.

(2 =>3) is trivial.

(3 =>1) Let D be a bounded directed set of self-
adjoint elements of &/ with supremum, \/ D. Then as f
is positive, { f(d): d € D} is directed and bounded
by f(\V D), and thus has a supremum, \/ ., f(d). To
show that f is normal, we must prove that f(\/ D) =
Vaep f(d). Since f is linear, we may assume without



loss of generality that D C [0,1]. Let ¢: 2 — C be a
normal state. It suffices to show that

o(f(V D)) = ‘P(VdeD f(d)).

Note that D (as net) converges ultraweakly to \/ D in <7,
and thus in [0,1], as well. Since the restriction of f
to [0,1]4 is ultraweakly continuous, the net (f(d))dep
converges ultraweakly to f(\/ D) in . So (¢p(f(d)))aep
converges to o(f(\/ D)). Since (¢(f(d)))aep is directed,
o(f(\/ D)) is in fact its supremum. Finally, since ¢ is
normal, ¢(Vyep £(d) = Vyep 2(f(d)) = ¢(F(V D).

We have proven Statement (C1), so f is normal. O

(C1)

Corollary 49. Let f: of — A be a positive linear map
between von Neumann algebras. Let (fo)acp be a net
of normal positive linear maps from < to % which con-
verges uniformly on [0,1] o ultraweakly to f.

Then f is normal.

Proof. The uniform limit of continuous functions is con-
tinuous. In particular, since the f, (being normal
and hence ultraweakly continuous) converge uniformly
on [0,1]. to f, we see that the restriction of f to [0,1]
is ultraweakly continuous, and thus f is normal by
Lemma 48. O

Lemma 50. Let & be a C*-algebra of operators on a
Hilbert space 5€. Let o/ be a C*-algebra. Let (fo)aenD
be a net of completely positive linear maps from <f
to $B which converges pointwise weakly to a linear
map f: o — AB. Then f is completely positive.

Proof. Let A be a positive N x N-matrix over & for
some N € N. We must show that (f(A4;;));; is a pos-
itive N x N-matrix over #. Note that the N x N-
matrices over Z can be considered a C*-subalgebra of
operators on PN, To prove that (f(A;;))i; is posi-
tive, we will show that (fo(A;j))i; converges to (f(A;;))i;
weakly with respect to %N, (This is sufficient, be-
cause the weak limit of positive operators is positive, and
each (fo(Aij))i; is positive.)

Let z,y € %Y be given. To show that (f,(A4:;))ij
converges to (f(A;j))i; in the weak operator topology we
must show that

( (f(Aij) = falAij))ij @, y )
= >, ((f(Ay) = fa(Aiy)) 255 v )

converges to 0 as o — oo. Let 4,5 € {1,..., N} be given.
Since f, converges pointwise in the weak operator topol-
ogy to f, ((fa(Aij) — f(Ai;))z;,y:) converges in C to 0.
Thus the right-hand side of Equality (C2), being a finite
sum of such terms, converges to 0 as & — oo. Thus f is
completely positive. O

(C2)

Corollary 51. Let o/ and B be von Neumann algebras.
Let (fo)acp be a net of completely positive linear maps
from <7 to B which converges pointwise ultraweakly to a
linear map f: o/ — %B. Then f is completely positive.
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Appendix D: Cauchy—Schwarz for 2-Positive Maps

The classical form of the Cauchy—Schwarz inequality is
that for any vectors x and y in a complex vector space 2
with semi-inner product (—, —) we have

(2, ) < (z,2) ().

Since any positive functional ¢ on a C*-algebra 7 gives
a semi-inner product on & by (a,b) = p(a*b),
lp(aD)* < p(a*a) p(b°D). (D1)

This is known as Kadison’s inequality. We need the
following generalization. Given a 2-positive linear
map ¢: & — % we have, for all a,b € &7,

le(@d)l? < lelaa)] @ b)ll-

Pau02

(D2)

Since it is an exercise in and seems not to be men-
tioned elsewhere we have included a proof of Inequal-
ity (D2) in this subsection (see Theorem 54).

Recall that a linear map ¢: &/ — A is 2-positive when-

ever [ié{z; %Z;] is positive for every positive matrix [ 4]
) c7

with a, € /. The trick behind the proof of Inequal-
ity (D2) is to analyze which 2 x 2 matrices of operators
on a Hilbert space are positive (see Lemma 53). Let us
first recall the situation for 2 x 2-matrices over C.

Lemma 52. LetT = [ b a] be a self-adjoint 2 X 2 matriz

a* q
over C. The following are equivalent.

1. T 1s positive;
2. T has positive eigenvalues;
3. T has positive determinant and positive trace;
4. p,q >0 and |a* < pq.
Proof. We leave this to the reader. O

Lemma 53. Let T = [ . S] be a self-adjoint 2 x 2
matriz of bounded operators on a Hilbert space 7. The
following are equivalent.

1. T is positive.
2. P,Q >0, and for all x,y € I,

(Ay,2)]* < (Pa.z) (Qy,y). (D3)

Moreover, if T is positive, then:
3. A*A<||P||Q
4. AA* < Q| P

5. A2 < [IPIHIQI



Proof. ( X Let z,y € 5 be given. Let us consider

T = [ g;x ) ] Since T is self-adjoint, T” is self-
T,y Qy y)

adjoint. Furtfler given A, i € C we have

<{P A} {)\x] {/\x]> _ <{<P$,x> <Ay,x>] [/\] {/\]>
A" Qflmy] [y (Arz,y) (Qu.y)||p)’ 1]/
From this we see that as T is positive, 1" is positive.
Then by Lemma 52 we get (Pz,z) > 0, (Qy,y) > 0,
and [(Ay,z)[> < (Pz,z) (Qy,y). Hence P and Q are
positive, and Inequality (D3) holds.

(2 = 1) We must show that T is positive. Note

that T is self-adjoint since both P and Q are self-adjoint.
Given z,y € 7 we have

(ol BB - L= @l )LD
A Q) |yl |y (A*z,y) (Qu.y)) |1]"[1] /"
So to show that T is positive, it suffices to show that
T = [<<Pm @) (A, zi] is positive. By Lemma 52 we must

Atzy) (Qu,y 5

show that (Pz,z) > 0, (Qy,y) > 0, and |(Ay,z)|” <
(Px,z) {(Qy,y). The latter statement is Inequality (D3)
and holds by assumption. The other two statements fol-

low from P > 0 and @ > 0.

(3) Assume that T is positive. Let y € S be given. We
must show that
(A Ay,y) < [|P]| (Qy,y) -

(Ay, Ay) = [(Ay, Ay)|. So

(D4)
Note that 0 < (A*Ay,y) =

(Ay, Ay)|* < (PAy, Ay) (Qu, )
by Ineq. (D3) with z = Ay

I1PIl {(Ay, Ay) (Qu,y)
since P < ||P|| and 0 < Q.

IN
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So either (A* Ay, y) = 0 — in which case Inequality (D4)
holds trivially — or (A*Ay,y) # 0 in which case we get

(A" Ay,y) = (Ay, Ay) < ||P||(Qy,y).

Thus A*A < ||P]| Q.
(4) follows by a similar reasoning as in 3.

(5) We have [|A|* = [[A*A]| < [[[IP]Q] =

IPIIQI
since A*A < ||P||Q by 3 O

Theorem 54 (Cauchy—Schwarz for 2-positive maps).
Let f: of — P be a 2-positive map between C*-algebras.
Then we have, for all a,b € o :

1. f(b*a) f(a"b)

IA

1f(a"a)]| F(b°0)

2. f(a*b) f(b*a)

IN

1£ (67| f(a”a)

3. f @) < [If (@ a)ll[|f®*b)]

Proof. We may assume that % is a C*-subalgebra of
the space of bounded linear operators #(7¢) on Hilbert
space . Since [§.2 28] = [ O/] 88; is positive and f
is 2-positive we get that T := ( Eb bz) is positive

in My(%), and thus T is posmve 1n
Now apply Lemma 53. O



