A Kochen-Specker system has at least 21 vertices

Sander Uijlen
suijlen@cs.ru.nl

Bas Westerbaan
bwesterb@cs.ru.nl

Radboud Universiteit Nijmegen
July 7, 2014

A Kochen-Specker system S is a finite set of points on the (open) northern hemisphere, such that there is no 010-coloring; that is: there is no $\{0,1\}$-valued coloring with

1. three pairwise orthogonal points are assigned $(1,0,0),(0,1,0)$ or $(0,0,1)$ and
2. two orthogonal points are not assigned (1,1).
point $\quad \sim$ direction of magnetic field in measurement of SPIN-1
coloring \sim non-contextual deterministic theory

A Kochen-Specker system S is a finite set of points on the (open) northern hemisphere, such that there is no 010-coloring; that is: there is no $\{0,1\}$-valued coloring with

1. three pairwise orthogonal points are assigned $(1,0,0),(0,1,0)$ or $(0,0,1)$ and
2. two orthogonal points are not assigned (1,1).
point \sim direction of magnetic field in measurement of SPIN-1
coloring \sim non-contextual deterministic theory

Theorem (Kochen-Specker)

There is a Kochen-Specker system. Thus: there is no non-contextual deterministic theory predicting the measurement of a SPIN-1 particle.

The smallest Kochen-Specker system?

Kochen-Specker	1975	≤ 117
Penrose, Peres (indep.)	1991	
Conway	~ 1995	

Arends, Wampler, Ouaknine 2009

The smallest Kochen-Specker system?

Kochen-Specker
Penrose, Peres (indep.)
$1975 \leq 117$
$1991 \leq 33$
Conway

1975	≤ 117
1991	≤ 33
~ 1995	

Arends, Wampler, Ouaknine 2009

The smallest Kochen-Specker system?

Kochen-Specker
Penrose, Peres (indep.)
Conway
$1975 \leq 117$
$1991 \leq 33$
$\sim 1995 \leq 31$

The smallest Kochen-Specker system?

Kochen-Specker
Penrose, Peres (indep.)
Conway
$1975 \leq 117$
$1991 \leq 33$
$\sim 1995 \leq 31$

Arends, Wampler, Ouaknine $2009 \geq 18$

The smallest Kochen-Specker system?

Kochen-Specker	1975	≤ 117
Penrose, Peres (indep.)	1991	≤ 33
Conway	~ 1995	≤ 31
U\&W	may	≥ 21
Arends, Wampler, Ouaknine	2009	≥ 18

The smallest Kochen-Specker system?

Kochen-Specker	1975	≤ 117
Penrose, Peres (indep.)	1991	≤ 33
Conway	~ 1995	≤ 31
U\&W	july?	≥ 22 or $=21$
U\&W	may	≥ 21
Arends, Wampler, Ouaknine	2009	≥ 18

Conway's record

It is a problem about graphs

Given a finite set of points S on the projective plane, its orthogonality graph $\mathcal{G}(S)$ has as vertices the points and two points are adjacent if and only if they are orthogonal.

It is a problem about graphs

Given a finite set of points S on the projective plane, its orthogonality graph $\mathcal{G}(S)$ has as vertices the points and two points are adjacent if and only if they are orthogonal.

A graph G is embeddable if there is a S such that $G \leq \mathcal{G}(S)$.

It is a problem about graphs

Given a finite set of points S on the projective plane, its orthogonality graph $\mathcal{G}(S)$ has as vertices the points and two points are adjacent if and only if they are orthogonal.

A graph G is embeddable if there is a S such that $G \leq \mathcal{G}(S)$.
A 010 -coloring of a graph, is a $\{0,1\}$-vertex coloring, such that

1. every triangle is colored $(1,0,0),(0,1,0)$ or $(0,0,1)$ and
2. no adjacent vertices are colored both 1 .

It is a problem about graphs

There is a Kochen-Specker system with n points if and only if
there is a embeddable and non-010-colorable graph on n vertices.

Restrict the search

(The orthogonality graph of) a minimal Kochen-Specker system is connected; $\sim 10^{26.4}$

Restrict the search

(The orthogonality graph of) a minimal Kochen-Specker system is connected; squarefree and $\sim 10^{26.4}$
$\sim 10^{10.2}$

Restrict the search

(The orthogonality graph of) a minimal Kochen-Specker system is connected;
squarefree and $\sim 10^{26.4}$
$\sim 10^{10.2}$
has minimal vertex degree $3 ; \sim 10^{7.5}$

The candidates

Our computation found the following number of non 010-colorable squarefree graphs with minimal vertex degree 3

$$
\begin{array}{rl}
\# V & \text { \# candidates } \\
\hline \leq 16 & 0 \\
17 & 1 \\
18 & 2 \\
19 & 19 \\
20 & 441
\end{array}
$$

The candidates

Our computation found the following number of non 010-colorable squarefree graphs with minimal vertex degree 3

$$
\begin{array}{rl}
\# V & \# \text { candidates } \\
\hline \leq 16 & 0 \\
17 & 1 \\
18 & 2 \\
19 & 19 \\
20 & 441 \\
21 & \geq 7616
\end{array}
$$

Unembeddable subgraphs

All these candidates contain as a subgraph one of these unembeddable graphs.

Pen and paper proof of unembeddability

Suppose this graph is embeddable.

Note that v and a are distinct points orthogonal to p_{1}. Thus p_{1} is fixed. Observe: p_{1} is collinear to $v \times a$.

Pen and paper proof of unembeddability

Suppose this graph is embeddable.

Note that v and a are distinct points orthogonal to p_{1}. Thus p_{1} is fixed. Observe: p_{1} is collinear to $v \times a$.

Similarly: p_{2} is collinear to $v \times(v \times a)$. And so on. We see a is collinear to $x \times(x \times(w \times(w \times(v \times(v \times a)))))$.

Pen and paper proof of unembeddability

We may assume $z=(0,0,1), x=(1,0,0), v=\left(v_{1}, v_{2}, 0\right)$, $w=\left(w_{1}, w_{2}, 0\right)$ and $a=\left(0, a_{2}, a_{3}\right)$. We have:

$$
\left(\begin{array}{c}
0 \\
a_{2} \\
a_{3}
\end{array}\right) \text { is collinear to }\binom{-a_{2} v_{1} w_{2}\left(v_{1} w_{1}+v_{2} w_{2}\right)}{-a_{3}\left(v_{1}^{2} w_{1}^{2}+v_{1}^{2} w_{2}^{2}+v_{2}^{2} w_{1}^{2}+v_{2}^{2} w_{2}^{2}\right)}
$$

Pen and paper proof of unembeddability

We may assume $z=(0,0,1), x=(1,0,0), v=\left(v_{1}, v_{2}, 0\right)$, $w=\left(w_{1}, w_{2}, 0\right)$ and $a=\left(0, a_{2}, a_{3}\right)$. We have:

$$
\left(\begin{array}{c}
0 \\
a_{2} \\
a_{3}
\end{array}\right) \text { is collinear to }\left(\begin{array}{c}
0 \\
-a_{2} v_{1} w_{2}\left(v_{1} w_{1}+v_{2} w_{2}\right) \\
-a_{3}\left(v_{1}^{2} w_{1}^{2}+v_{1}^{2} w_{2}^{2}+v_{2}^{2} w_{1}^{2}+v_{2}^{2} w_{2}^{2}\right)
\end{array}\right)
$$

That is:

$$
\begin{aligned}
v_{1} w_{2}\langle v, w\rangle & =v_{1} w_{2}\left(v_{1} w_{1}+v_{2} w_{2}\right) \\
& =v_{1}^{2} w_{1}^{2}+v_{1}^{2} w_{2}^{2}+v_{2}^{2} w_{1}^{2}+v_{2}^{2} w_{2}^{2} \\
& =\left(v_{1}^{2}+v_{2}^{2}\right) w_{1}^{2}+\left(v_{1}^{2}+v_{2}^{2}\right) w_{2}^{2} \\
& =w_{1}^{2}+w_{2}^{2}=1 .
\end{aligned}
$$

Pen and paper proof of unembeddability

We may assume $z=(0,0,1), x=(1,0,0), v=\left(v_{1}, v_{2}, 0\right)$, $w=\left(w_{1}, w_{2}, 0\right)$ and $a=\left(0, a_{2}, a_{3}\right)$. We have:

$$
\left(\begin{array}{c}
0 \\
a_{2} \\
a_{3}
\end{array}\right) \text { is collinear to }\left(\begin{array}{c}
0 \\
-a_{2} v_{1} w_{2}\left(v_{1} w_{1}+v_{2} w_{2}\right) \\
-a_{3}\left(v_{1}^{2} w_{1}^{2}+v_{1}^{2} w_{2}^{2}+v_{2}^{2} w_{1}^{2}+v_{2}^{2} w_{2}^{2}\right)
\end{array}\right)
$$

That is:

$$
\begin{aligned}
v_{1} w_{2}\langle v, w\rangle & =v_{1} w_{2}\left(v_{1} w_{1}+v_{2} w_{2}\right) \\
& =v_{1}^{2} w_{1}^{2}+v_{1}^{2} w_{2}^{2}+v_{2}^{2} w_{1}^{2}+v_{2}^{2} w_{2}^{2} \\
& =\left(v_{1}^{2}+v_{2}^{2}\right) w_{1}^{2}+\left(v_{1}^{2}+v_{2}^{2}\right) w_{2}^{2} \\
& =w_{1}^{2}+w_{2}^{2}=1 .
\end{aligned}
$$

Since v and w are not collinear, we have by Cauchy-Schwarz $|\langle v, w\rangle|<1$. Note $\left|v_{1}\right|,\left|w_{2}\right| \leq 1$. Thus: $\left|v_{1} w_{2}\langle v, w\rangle\right|<1$. Contradiction.

Example of automized cross product chasing

load_package redlog;
rlset R;
procedure $\mathrm{d}(\mathrm{x}, \mathrm{y})$;
(first x) * (first y) +
(second x) * (second y) +
(third x) * (third y);
procedure $k(x, y)$;
\{(second $x) *($ third $y)-($ third $x) *($ second $y)$,
(third x)*(first y) - (first x)*(third y),
(first $x) *($ second $y)-($ second $x) *($ first $y)\}$;
v0c1 := 1; v0c2 := 0; v0c3 := 0;
$\mathrm{v} 1 \mathrm{c} 1:=0$; v1c2 $:=1$; v1c3 $:=0$;
v0 := \{v0c1, v0c2, v0c3\};
$\mathrm{v} 1:=\{\mathrm{v} 1 \mathrm{c} 1, \mathrm{v} 1 \mathrm{c} 2, \mathrm{v} 1 \mathrm{c} 3\}$;
v2 := \{v2c1, v2c2, v2c3\};
v3 := \{v3c1, v3c2, v3c3\};
v2c1 := 0 ;
neq0 := $k(v 0, k(v 3, v 1))$;
(snip)
neq29 : $=k(k(k(k(v 3, v 1), v 1), v 2), k(k(v 3, v 0), v 3))$;
phi :=
(first neq0 neq 0 or
second neq0 neq 0 or
third neq0 neq 0) and
(snip)
(first neq29 neq 0 or second neq29 neq 0 or third neq29 neq 0) and
$\mathrm{d}(\mathrm{v} 2, \mathrm{v} 0)=0$ and
$\mathrm{d}(\mathrm{k}(\mathrm{k}(\mathrm{v} 3, \mathrm{v} 0), \mathrm{v} 3), \mathrm{k}(\mathrm{k}(\mathrm{k}(\mathrm{k}(\mathrm{v} 3, \mathrm{v} 1), \mathrm{v} 1), \mathrm{v} 2), \mathrm{v} 2))=0$ and true;
rlqe ex(v3c3,
ex (v3c2,
ex (v3c1,
ex (v2c3,
ex(v2c2,phi))))) ;

Source code, paper and experimental results can be found at
kochen-specker.info

Source code, paper and experimental results can be found at
kochen-specker.info

Some open problems:

- If G is embeddable, is there a S such that $G=\mathcal{G}(S)$.
- Is every embeddable graph, grid embeddable? That is: using points of the form $\left(\frac{x}{\sqrt{n}}, \frac{y}{\sqrt{n}}, \frac{z}{\sqrt{n}}\right)$ for $x, y, z, n \in \mathbb{Z}$.

