A Kochen-Specker system has at least 21 vertices

Sander Uijlen
suijlen@cs.ru.nl

Bas Westerbaan
bwesterb@cs.ru.nl

Radboud Universiteit Nijmegen

July 7, 2014
A Kochen-Specker system S is a finite set of points on the (open) northern hemisphere, such that there is no 010-coloring; that is: there is no $\{0, 1\}$-valued coloring with

1. three pairwise orthogonal points are assigned $(1, 0, 0), (0, 1, 0)$ or $(0, 0, 1)$ and

2. two orthogonal points are not assigned $(1, 1)$.

point \sim direction of magnetic field in measurement of SPIN-1 coloring \sim non-contextual deterministic theory
A **Kochen-Specker system** S is a finite set of points on the (open) northern hemisphere, such that there is no 010-coloring; that is: there is no $\{0, 1\}$-valued coloring with

1. three pairwise orthogonal points are assigned $(1, 0, 0)$, $(0, 1, 0)$ or $(0, 0, 1)$ and
2. two orthogonal points are not assigned $(1, 1)$.

point \sim direction of magnetic field in measurement of SPIN-1 coloring \sim non-contextual deterministic theory

Theorem (Kochen-Specker)

There is a Kochen-Specker system. Thus: there is no non-contextual deterministic theory predicting the measurement of a SPIN-1 particle.
The smallest Kochen-Specker system?

<table>
<thead>
<tr>
<th>System</th>
<th>Year</th>
<th>Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kochen-Specker</td>
<td>1975</td>
<td>\leq 117</td>
</tr>
<tr>
<td>Penrose, Peres (indep.)</td>
<td>1991</td>
<td></td>
</tr>
<tr>
<td>Conway</td>
<td>\sim 1995</td>
<td></td>
</tr>
<tr>
<td>Arends, Wampler, Ouaknine</td>
<td>2009</td>
<td></td>
</tr>
</tbody>
</table>
The smallest Kochen-Specker system?

Kochen-Specker 1975 ≤ 117
Penrose, Peres (indep.) 1991 ≤ 33
Conway ~ 1995

Arends, Wampler, Ouaknine 2009
The smallest Kochen-Specker system?

<table>
<thead>
<tr>
<th>System</th>
<th>Date</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kochen-Specker</td>
<td>1975</td>
<td>≤ 117</td>
</tr>
<tr>
<td>Penrose, Peres (indep.)</td>
<td>1991</td>
<td>≤ 33</td>
</tr>
<tr>
<td>Conway</td>
<td>~ 1995</td>
<td>≤ 31</td>
</tr>
</tbody>
</table>

Arends, Wampler, Ouaknine | 2009 |
The smallest Kochen-Specker system?

<table>
<thead>
<tr>
<th>System</th>
<th>Year</th>
<th>Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kochen-Specker</td>
<td>1975</td>
<td>≤ 117</td>
</tr>
<tr>
<td>Penrose, Peres (indep.)</td>
<td>1991</td>
<td>≤ 33</td>
</tr>
<tr>
<td>Conway</td>
<td>\sim 1995</td>
<td>≤ 31</td>
</tr>
<tr>
<td>Arends, Wampler, Ouaknine</td>
<td>2009</td>
<td>≥ 18</td>
</tr>
</tbody>
</table>
The smallest Kochen-Specker system?

<table>
<thead>
<tr>
<th>System</th>
<th>Year</th>
<th>Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kochen-Specker</td>
<td>1975</td>
<td>≤ 117</td>
</tr>
<tr>
<td>Penrose, Peres (indep.)</td>
<td>1991</td>
<td>≤ 33</td>
</tr>
<tr>
<td>Conway</td>
<td>~ 1995</td>
<td>≤ 31</td>
</tr>
<tr>
<td>U&W</td>
<td>may</td>
<td>≥ 21</td>
</tr>
<tr>
<td>Arends, Wampler, Ouaknine</td>
<td>2009</td>
<td>≥ 18</td>
</tr>
</tbody>
</table>
The smallest Kochen-Specker system?

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kochen-Specker</td>
<td>1975</td>
<td>≤ 117</td>
</tr>
<tr>
<td>Penrose, Peres (indep.)</td>
<td>1991</td>
<td>≤ 33</td>
</tr>
<tr>
<td>Conway</td>
<td>\sim 1995</td>
<td>≤ 31</td>
</tr>
<tr>
<td>U&W</td>
<td></td>
<td>≥ 22 or $= 21$</td>
</tr>
<tr>
<td>U&W</td>
<td></td>
<td>≥ 21</td>
</tr>
<tr>
<td>Arends, Wampler, Ouaknine</td>
<td>2009</td>
<td>≥ 18</td>
</tr>
</tbody>
</table>
Conway’s record
It is a problem about graphs

Given a finite set of points S on the projective plane, its orthogonality graph $\mathcal{G}(S)$ has as vertices the points and two points are adjacent if and only if they are orthogonal.
It is a problem about graphs

Given a finite set of points S on the projective plane, its orthogonality graph $G(S)$ has as vertices the points and two points are adjacent if and only if they are orthogonal.

A graph G is embeddable if there is a S such that $G \leq G(S)$.
Given a finite set of points S on the projective plane, its orthogonality graph $\mathcal{G}(S)$ has as vertices the points and two points are adjacent if and only if they are orthogonal.

A graph G is embeddable if there is a S such that $G \leq \mathcal{G}(S)$.

A 010-coloring of a graph, is a $\{0,1\}$-vertex coloring, such that

1. every triangle is colored $(1,0,0)$, $(0,1,0)$ or $(0,0,1)$ and
2. no adjacent vertices are colored both 1.
It is a problem about graphs

There is a Kochen-Specker system with n points if and only if there is a embeddable and non-010-colorable graph on n vertices.
Restrict the search

(The orthogonality graph of) a minimal Kochen-Specker system is connected; $\sim 10^{26.4}$.

(The orthogonality graph of) a minimal Kochen-Specker system is connected; squarefree and

\[\sim 10^{26.4} \]
\[\sim 10^{10.2} \]
Restrict the search

(The orthogonality graph of) a minimal Kochen-Specker system is connected; \(\sim 10^{26.4}\) squarefree and \(\sim 10^{10.2}\) has minimal vertex degree 3; \(\sim 10^{7.5}\)
The candidates

Our computation found the following number of non 010-colorable squarefree graphs with minimal vertex degree 3

<table>
<thead>
<tr>
<th>$# V$</th>
<th>$#$ candidates</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 16</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>20</td>
<td>441</td>
</tr>
</tbody>
</table>
The candidates

Our computation found the following number of non 010-colorable squarefree graphs with minimal vertex degree 3

<table>
<thead>
<tr>
<th>#V</th>
<th># candidates</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 16</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>20</td>
<td>441</td>
</tr>
<tr>
<td>21</td>
<td>≥ 7616</td>
</tr>
</tbody>
</table>
Unembeddable subgraphs

All these candidates contain as a subgraph one of these unembeddable graphs.
Suppose this graph is embeddable.

Note that v and a are distinct points orthogonal to p_1. Thus p_1 is fixed. Observe: p_1 is collinear to $v \times a$.
Suppose this graph is embeddable.

Note that \(v \) and \(a \) are distinct points orthogonal to \(p_1 \). Thus \(p_1 \) is fixed. Observe: \(p_1 \) is collinear to \(v \times a \).

Similarly: \(p_2 \) is collinear to \(v \times (v \times a) \). And so on. We see \(a \) is collinear to \(x \times (x \times (w \times (w \times (v \times (v \times a)))))) \).

Pen and paper proof of unembeddability
Pen and paper proof of unembeddability

We may assume $z = (0, 0, 1)$, $x = (1, 0, 0)$, $v = (v_1, v_2, 0)$, $w = (w_1, w_2, 0)$ and $a = (0, a_2, a_3)$. We have:

$$\begin{pmatrix} 0 \\ a_2 \\ a_3 \end{pmatrix}$$ is collinear to $$\begin{pmatrix} 0 \\ -a_2 v_1 w_2 (v_1 w_1 + v_2 w_2) \\ -a_3 (v_1^2 w_1^2 + v_1^2 w_2^2 + v_2^2 w_1^2 + v_2^2 w_2^2) \end{pmatrix}$$

Since v and w are not collinear, we have by Cauchy-Schwarz $|\langle v, w \rangle| < 1$. Note $|v_1|, |w_2| \leq 1$. Thus:

$$|v_1 w_2 \langle v, w \rangle| < 1.$$
Pen and paper proof of unembeddability

We may assume $z = (0, 0, 1)$, $x = (1, 0, 0)$, $\nu = (v_1, v_2, 0)$, $w = (w_1, w_2, 0)$ and $a = (0, a_2, a_3)$. We have:

$$\begin{pmatrix} 0 \\ a_2 \\ a_3 \end{pmatrix} \text{ is collinear to } \begin{pmatrix} 0 \\ -a_2 v_1 w_2 (v_1 w_1 + v_2 w_2) \\ -a_3 (v_1^2 w_1^2 + v_1^2 w_2^2 + v_2^2 w_1^2 + v_2^2 w_2^2) \end{pmatrix}$$

That is:

$$v_1 w_2 \langle \nu, w \rangle = v_1 w_2 (v_1 w_1 + v_2 w_2)$$
$$= v_1^2 w_1^2 + v_1^2 w_2^2 + v_2^2 w_1^2 + v_2^2 w_2^2$$
$$= (v_1^2 + v_2^2) w_1^2 + (v_1^2 + v_2^2) w_2^2$$
$$= w_1^2 + w_2^2 = 1.$$
Pen and paper proof of unembeddability

We may assume \(z = (0, 0, 1) \), \(x = (1, 0, 0) \), \(v = (v_1, v_2, 0) \), \(w = (w_1, w_2, 0) \) and \(a = (0, a_2, a_3) \). We have:

\[
\begin{pmatrix} 0 \\ a_2 \\ a_3 \end{pmatrix} \text{ is collinear to } \begin{pmatrix} 0 \\ -a_2 v_1 w_2 (v_1 w_1 + v_2 w_2) \\ -a_3 (v_1^2 w_1^2 + v_1^2 w_2^2 + v_2^2 w_1^2 + v_2^2 w_2^2) \end{pmatrix}
\]

That is:

\[
v_1 w_2 \langle v, w \rangle = v_1 w_2 (v_1 w_1 + v_2 w_2) = v_1^2 w_1^2 + v_1^2 w_2^2 + v_2^2 w_1^2 + v_2^2 w_2^2 = (v_1^2 + v_2^2) w_1^2 + (v_1^2 + v_2^2) w_2^2 = w_1^2 + w_2^2 = 1.
\]

Since \(v \) and \(w \) are not collinear, we have by Cauchy-Schwarz

\(| \langle v, w \rangle | < 1\). Note \(|v_1|, |w_2| \leq 1\). Thus: \(|v_1 w_2 \langle v, w \rangle | < 1\).

Contradiction.
Example of automized cross product chasing

load_package redlog;
rlset R;
procedure d(x,y);
 (first x) * (first y) +
 (second x) * (second y) +
 (third x) * (third y);
procedure k(x,y);
 { (second x)*(third y) - (third x)*(second y),
 (third x)*(first y) - (first x)*(third y),
 (first x)*(second y) - (second x)*(first y) };
v0c1 := 1; v0c2 := 0; v0c3 := 0;
v1c1 := 0; v1c2 := 1; v1c3 := 0;
v0 := {v0c1, v0c2, v0c3};
v1 := {v1c1, v1c2, v1c3};
v2 := {v2c1, v2c2, v2c3};
v3 := {v3c1, v3c2, v3c3};
v2c1 := 0;
neq0 := k(v0,k(v3,v1));

(snip)

neq29 := k(k(k(k(v3,v1),v1),v2),k(k(v3,v0),v3));
phi :=
 (first neq0 neq 0 or
 second neq0 neq 0 or
 third neq0 neq 0) and

(snip)

 (first neq29 neq 0 or
 second neq29 neq 0 or
 third neq29 neq 0) and
d(v2,v0) = 0 and
d(k(k(v3,v0),v3),k(k(k(v3,v1),v1),v2),v2)) = 0 and
true;
rlqe ex(v3c3,
ex(v3c2,
ex(v3c1,
ex(v2c3,
ex(v2c2,phi))))));
Source code, paper and experimental results can be found at

kochen-specker.info
Source code, paper and experimental results can be found at kochen-specker.info

Some open problems:

- If G is embeddable, is there a S such that $G = G(S)$.
- Is every embeddable graph, grid embeddable? That is: using points of the form $(\frac{x}{\sqrt{n}}, \frac{y}{\sqrt{n}}, \frac{z}{\sqrt{n}})$ for $x, y, z, n \in \mathbb{Z}$.