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Abstract At the heart of the Conway-Kochen Free Will Theorem and

Kochen and Specker’s argument against non-contextual hidden variable

theories is the existence of a Kochen-Specker (KS) system: a set of points

on the sphere that has no {0, 1}-coloring such that at most one of two

orthogonal points are colored 1 and of three pairwise orthogonal points

exactly one is colored 1. In public lectures, Conway encouraged the search

for small KS systems. At the time of writing, the smallest known KS

system has 31 vectors.

Arends, Ouaknine and Wampler have shown that a KS system has at

least 18 vectors, by reducing the problem to the existence of graphs with a

topological embeddability and non-colorability property. The bottleneck

in their search proved to be the sheer number of graphs on more than 17

vertices and deciding embeddability.

Continuing their effort, we prove a restriction on the class of graphs

we need to consider and develop a more practical decision procedure for

embeddability to improve the lower bound to 22.
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§1 Introduction

1.1 The experiment
Consider the following experiment. Shoot a deuterium atom (or another

neutral spin 1 particle) through a certain fixed inhomogeneous magnetic field,

such as that in the Stern-Gerlach experiment. The particle will then move

undisturbed or deviate. What we have done is measure the spin component∗1 of

the particle along a certain direction. This direction depends on the specifics of

the field and the movement of the particle.

Quantum Mechanics only predicts the probability, given the direction,

whether the particle will deviate. Its probabilistic prediction has been thor-

oughly tested. One wonders: is there a deterministic theory predicting the

outcome of this experiment?

Kochen and Specker have shown that such a non-contextual determin-

istic theory must be odd: it cannot satisfy the plausible SPIN axiom, that is:

SPIN Axiom (see 5))

Given three pairwise orthogonal directions. In exactly one of the directions, the

particle will not deviate.

Their argument is based on the existence of a Kochen-Specker system.

Definition 1.1

A Kochen-Specker (KS) system is a finite set of points on the sphere∗2 for

which each pair is not antipodal and there is no 010-coloring. A 010-coloring

is a {0, 1}-coloring of the points such that∗3

1. no pair of orthogonal points are both colored 1 and

2. of three pairwise orthogonal points exactly one is colored 1; or alternatively:

they are colored 0, 1 and 0 in some order.

A point on the sphere obviously corresponds to a direction in space. Because of

this, the terms point, vector and direction can be used interchangeably. Antipo-

∗1 As we are only interested in whether the particle deviates or not, we actually only consider
the square of the spin component.

∗2 We define KS systems to be three dimensional, as in the original proof of Kochen and
Specker. Later, higher dimensional systems have been studied. See, for instance 12, p. 201).

∗3 In other papers, like 2), the 0 and 1 are swapped; they consider 101-colorings. These
colorings are of course equivalent and the difference arises from considering either squared
spin measurements S2

v , or 1 − S2
v for spin in direction v.
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dal points correspond to opposite vectors and these span the same direction in

space.

Fig. 1 John Conway’s 31 vector

Kochen-Specker system

Suppose there is a KS system and a

non-contextual deterministic theory satisfying

the SPIN Axiom. Then we color a point of this

system 0, whenever this theory predicts that

the particle will deviate if the spin is measured

in the direction corresponding to that point,

and 1 otherwise. Given two orthogonal points

of the system, we can find a third point orthog-

onal to both of them. The SPIN axiom implies

exactly one of them is colored 1, so they cannot

both be colored 1. Similarly, given three pair-

wise orthogonal vectors in the system, the SPIN

axiom implies exactly one of them is colored 1.

Hence there would be a 010-coloring of the KS system, quod non. Therefore a

deterministic non-contextual theory cannot satisfy the SPIN Axiom.

The KS system proposed by Kochen and Specker contained 117 points7).

Penrose and Peres11) independently found a smaller system of 33 points. The

current record is the 31 point system of Conway12, p. 197). As pointed out by 3, 2),

finding small KS systems is of both theoretical and practical interest. In public

lectures, Conway himself, stressed the search for small KS systems.9)

Before we continue, we would like to make two remarks.

1. There is an inconsistency in the literature on how to count the number of

points in a Kochen-Specker system. One way is to take the minimal number

of points required to be non-010-colorable. This is how we count in this

paper. Another way is to require that for every pair of orthogonal points in

the system, there is a third point orthogonal to both. This way of counting

is for example used in 10).

2. We consider three-dimensional Kochen-Specker systems for two reasons.

First, every 3-dimensional system can be seen as a higher-dimensional sys-

tem. The converse is false. Secondly, the size of the least Kochen-Specker

system in dimension 4 and higher has already been found.10) The three-

dimensional case is still open.
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1.2 Overview
In 2) Arends, Ouaknine and Wampler (AOW) give a computer aided

proof that a KS system must have at least 18 vectors. We improve their lower

bound and show that a KS system must have at least 22 vectors.

First, in Subsection 1.3, we repeat a part of AOW’s work, in particular

the reduction of KS systems to graphs. The bottleneck of their search was the

sheer number of graphs and the deciding whether such graphs are embeddable.

In Section 2, we improve upon their reduction, to cut down the number of graphs

to consider drastically, and state the results of our main computation. Finally, in

Section 3, we describe our practical embeddability test. In Section 4, we discuss

related work. The software and results of the various computations performed

for this paper, can be found here16).

This is an extended version of the paper published in proceedings of

the 11th workshop on Quantum Physics and Logic.17) Compared to the results

presented on the workshop, we have improved the lower-bound to 22. We also

include new restrictions on the graph enumeration of which we would like to

emphasize Prop. 2.2, which promises to push the bound when implemented effi-

ciently. Furthermore we expand on methods to prove unembeddability. Finally

we discuss how the related results in the literature compare to ours.

1.3 Kochen-Specker graphs
We follow 2) and reduce the search for Kochen-Specker systems to the

search for a certain class of graphs. First note that in a Kochen-Specker system

we may replace a point with its antipodal point. They are both orthogonal to the

same points and hence the non-010-colorability is preserved. Therefore, we may

assume antipodal points are identified on the sphere. That is: a Kochen-Specker

system is a finite subset of the projective plane that is not 010-colorable.

Definition 1.2

Given a finite subset S of the projective plane (or equivalently, a finite sub-

set of the northern hemisphere without equator∗4). Define its orthogonality

graph G(S) as follows. The vertices are the points of S. Two vertices are joined

by an edge, if their corresponding points are orthogonal.

∗4 A subset of the projective plane can be identified with a subset of the closed northern
hemisphere. For a finite subset we can always rotate in such a way that no points lie on
the equator.
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Definition 1.3

A graph G is called embeddable, if it is a subgraph of an orthogonality graph.

That is: if there is a finite subset S of the projective plane, such that G ≤ G(S).

Definition 1.4

A graph is called 010-colorable if there is a {0, 1}-coloring of the vertices, with

1. for each triangle there is exactly one vertex that is colored 1 and

2. adjacent vertices are not both colored 1.

Definition 1.5

A Kochen-Specker graph is an embeddable graph that is not 010-colorable.

It is an easy, but important, consequence of the definitions that:

Fact 1.1

A finite subset S of the projective plane is a Kochen-Specker system, if and only

if its orthogonality graph G(S) is Kochen-Specker.

To prove there is no Kochen-Specker system on 17 points, it would

be sufficient to enumerate all graphs on 17 vertices and check these are not

010-colorable or not embeddable. However, this is infeasible as there are al-

ready ∼1026 non-isomorphic graphs on 17 points.13) Luckily, we can restrict

ourselves to certain classes of graphs.

Proposition 1.1 (by 2))

An embeddable graph is squarefree. That is: it does not contain the square

as a subgraph.∗5

v

w
Proof Given two non antipodal points v 6= w. See the

figure on the right. Consider the points orthogonal to v. This

is a great circle. The points orthogonal to w is a different great

circle. They intersect in precisely two antipodal points. Hence,

if c and d are points, both orthogonal to v and w, then c and d

are equivalent. Therefore, an embeddable graph cannot contain a square.

The squarefreeness is a considerable restriction. There are only ∼1010

∗5 Some authors call a graph squarefree if it does not contain the square as induced subgraph.
For them the complete graph on four vertices is squarefree. We follow Weisstein18)

and Sloane14) and call a graph squarefree if it does not contain the square as subgraph.
For us the complete graph on four vertices is not squarefree.
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non-isomorphic squarefree graphs on 17 vertices.14) Next, we show we can restrict

ourselves to connected graphs.

Proposition 1.2 (by 2))

A minimal Kochen-Specker graph is connected.

Proof Suppose G is a disconnected Kochen-Specker graph. Then one of

its components is not 010-colorable. As a subgraph of an embeddable graph,

is embeddable, this component is embeddable as well. Hence it is a smaller

connected Kochen-Specker graph.

The gain, however, is small. There are only ∼109 non-isomorphic squarefree

graphs on 17 vertices that are disconnected. In our computations, checking for

connectedness required more time than would be gained by reducing the number

of graphs. Cf. Corollary 2.1.

We have verified the main result of 2):

Fig. 2 AOW’s 17-vertex

non-010-colorable graph

Computation 1.1

There is only one non-010-colorable squarefree con-

nected graph on less than 18 vertices. See Figure 2.

It is not embeddable, as the graph in Figure 3 is an

unembeddable subgraph. For our proof, see Proposi-

tion 3.1. Hence a Kochen-Specker system has at least

18 points.

§2 An improved lower bound
Continuing the effort of Arends, Ouaknine and Wambler, we consider

another restriction.

Proposition 2.1

A minimal Kochen-Specker graph has minimal vertex-order three. That is: every

vertex is adjacent to at least three other vertices.

Proof Given a minimal Kochen-Specker graph G. Suppose v is a vertex

with order less than or equal 2. Let G′ be G with v removed. Clearly G′ is

embeddable. Suppose G′ is 010-colorable. Then we can extend the coloring to

a coloring of G as follows. If v is adjacent to only one or no vertex, then we can

color v with 0. Suppose v is adjacent to two vertices, say w and w′. If one of w
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or w′ is colored 1, we can color v with 0. If both w and w′ are colored 0, we can

color v with 1. This would imply G is 010-colorable, quod non. Therefore G′ is

a smaller Kochen-Specker graph, which contradicts the minimality of G.

There are only ∼107 squarefree non-isomorphic graphs on 17 vertices with min-

imal vertex order 3. Even though Arends, Ouaknine and Wampler note this

restriction once, surprisingly, they did not restrict their graph enumeration to

graphs with minimal vertex order 3. We present another considerable restriction.

Proposition 2.2

In a minimal Kochen-Specker graph, every vertex is part of a triangle.

Proof Given any graph G together with a vertex v of G such that v is not

part of a triangle. Let G′ denote G without v. Suppose G′ is 010-colorable.

Then so is G, as we may extend the coloring of G′ to G by coloring v with 0.

Contraposing: if G is not 010-colorable, then G′ is not 010-colorable. Clearly,

if G is embeddable, then so is G′. Thus if G is Kochen-Specker, then so is G′.

There are only ∼105 squarefree non-isomorphic graphs on 17 vertices with min-

imal vertex degree 3 where every vertex is part of a triangle. Unfortunately, we

could not find an efficient algorithm to restrict the enumeration of graphs to

those where every vertex is part of a triangle.

We continue with a strengthening of Proposition 1.2.

Proposition 2.3

A minimal Kochen-Specker graph is edge-biconnected. That is: removing any

single edge leaves the graph connected.

We need some preparation, before we can prove this Proposition.

Definition 2.1

Given a graph G and a vertex v of G. We say, v has fixed color c (in G), if G

is 010-colorable and for every 010-coloring of G, the vertex v is assigned color c.

We are interested in these graphs because of the following observation.

Lemma 2.1

If there is an embeddable graph G on n vertices with a vertex with fixed color 1,

then there is a Kochen-Specker graph on 2n vertices.

Proof Let G be a graph and v a vertex of G with fixed color 1. Consider



8 Sander Uijlen & Bas Westerbaan

two copies of the graph G. Connect the two instances of v with an edge. Call

this graph G′. Clearly, G′ is not 010-colorable.

We need to showG′ is embeddable. Given an embedding S ofG. We may

assume that the point in S corresponding to v is the north pole. Furthermore,

we may assume that there is no point on the x-axis, by rotating points along the

north pole. Let S′ be S rotated 90 degrees along the y-axis. Some points of S

and S′ might overlap. That is: there might be a point s in S and s′ in S′ that

are equal or antipodal. Observe that if no points of S′ and S overlap, then S∪S′

is an embedding of G′.

Suppose there are points in S′ and S that overlap. Note that the north

pole (and south pole) is not in S′. Let S′′ be S′ rotated along the north pole

at some angle α. There are finitely many angles such that there are overlapping

points. Thus there is an angle such that S ∪ S′′ is an embedding of G′.

Unfortunately, these graphs are not small.

Computation 2.1

There are no embeddable graphs with fixed color 1 on less than 17 vertices.∗6

We are ready to prove that a minimal KS graph is edge-biconnected.

Proof of Proposition 2.3 Given a minimal Kochen-Specker graph G.

a b

A B

Recall it must be connected. Suppose it is not

edge-biconnected. Then there must be an edge (a, b)

in G, whose removal disconnects G. Thus G decom-

poses into two connected graphs A and B with a ∈ A,

b ∈ B and (a, b) is the only edge between A and B.

Clearly A and B are embeddable.

Note that A must be 010-colorable, for if it were not 010-colorable,

then A is a Kochen-Specker graph, in contradiction with G’s minimality. Sim-

ilarly B is 010-colorable. Suppose there is a 010-coloring of A in which a is

colored 0. Then we can extend this coloring with any 010-coloring of B to

a 010-coloring of G, which is absurd. Thus a must have fixed color 1 in A. Simi-

larly b must have fixed color 1 in B. Thus by Computation 2.1, we have #A ≥ 17

and #B ≥ 17. Consequently #G ≥ 34. Contradiction with G’s minimality.

We can go one step further.

∗6 Source code at code/comp5.py of 16).
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Proposition 2.4

A minimal Kochen-Specker graph is edge-triconnected. That is: removing any

two edges keeps the graph connected.

Again, we need some preparation. First, we generalize the notion of fixed color.

Definition 2.2

Given a graph G together with selected vertices v1, . . . , vn ∈ G. The type t

of (v1, . . . , vn) (in G) is the set of all possible ways {v1, . . . , vn} can be 010-

colored. That is:

t =
{

(c(v1), . . . , c(vn)); c : G→ {0, 1}, c is a 010-coloring of G
}

A type of n vertices is called an n-type.

Example 2.1

• The triangle has 3-type {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

• Every vertex in a Kochen-Specker graph has type ∅.

• A vertex v has the 1-type {(1)} in G if and only if it has fixed color 1 in G.

Just as vertices with fixed color are rare, we are interested in types,

because most types do not occur in small graphs.

Computation 2.2

We have enumerated all embeddable graphs of less than 17 vertices and deter-

mined a lower bound at which a particular 1- or 2-type occurs, omitting the

trivial types {(0), (1)} and {(0, 0), (0, 1), (1, 0), (1, 1)}.∗7

1/2-type #G

{(0, 0), (1, 0), (0, 1)} non-trivially ≥ 10

{(0, 0), (1, 0), (1, 1)} ≥ 10

{(0, 0), (0, 1), (1, 1)} ≥ 10

{(0, 0), (0, 1))} ≥ 15

{(0, 0), (1, 0))} ≥ 15

{(0)} ≥ 15

{(0, 1), (1, 0)} ≥ 16

other ≥ 17

∗7 Source code at code/comp5.py of 16).
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The type {(0, 0), (1, 0), (0, 1)} occurs in the embeddable two-vertex graph .

Because the two vertices are adjacent, this occurrence of the type is called trivial.

Proof of Proposition 2.4

Given a minimal Kochen-Specker graph G.

a1

a2

b1

b2

A B

Suppose it is not edge-triconnected. Then it

splits into two graphs A and B together with ver-

tices a1, a2 ∈ A and b1, b2 ∈ B such that (a1, b1)

and (a2, b2) are the only edges between A and B. Note

that A and B must be 010-colorable, for otherwise G

would not be a minimal Kochen-Specker graph.

1. Suppose a1 = a2 and b1 = b2. Then G is not edge-biconnected. Contradic-

tion with Proposition 2.3.

2. Suppose a1 6= a2 and b1 = b2. Suppose b1 = b2 does not have a fixed color

in B. Then any coloring of A can be extended with some coloring in B to

a coloring of G. Contradiction. Apparently b1 = b2 has a fixed color in B.

a. Suppose b1 = b2 has fixed color 1 in B. Note #B ≥ 17 by Computa-

tion 2.2. Suppose there is a coloring of A in which both a1 and a2 have

color 0. Then, regardless whether a1 and a2 are adjacent or not, this

coloring can be extended with a coloring of B (in which b1 = b2 must

be colored 1) to a coloring G. Contradiction.

Thus the type of (a1, a2) in A cannot contain (0, 0). Thus, by Com-

putation 2.2, #A ≥ 17. Consequently #G ≥ 34. Contradiction with

minimality.

b. Apparently b1 = b2 has fixed color 0 in B. Hence, by Computation 2.2,

#B ≥ 15. Suppose a1 is not adjacent to a2. Then any coloring of A

can be extended with a coloring of B to a coloring of G. Contradiction.

Apparently a1 is adjacent to a2.

The type of (a1, a2) in A cannot contain (1, 0) or (0, 1) for otherwise G

can be colored. It also cannot contain (1, 1) as a1 and a2 are adjacent.

Thus both a1 and a2 have fixed color 0 in A. Hence #A ≥ 17 by Com-

putation 2.2. Consequently #G ≥ 32. Contradiction with minimality.

3. Suppose a1 = a2 and b1 6= b2. This leads to a contradiction in the same

way as in case 2.

4. Apparently a1 6= a2 and b1 6= b2. The type of (a1, a2) in A cannot con-

tain (0, 0), for otherwise G is colorable. Similarly, the type of (b1, b2) in B
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cannot contain (0, 0). Thus both #A ≥ 17 and #B ≥ 17. Hence #G ≥ 34.

Contradiction with minimality.

Although these restrictions are theoretically pleasing, they seem to be of

little use as a practical restriction. Concerning excluding disconnected graphs:

Computation 2.3

There are five non-isomorphic minimal squarefree connected graphs with mini-

mal vertex order 3 and they have 10 vertices.∗8 Three of them are embeddable

and shown below. The remaining two are depicted in Comptutation 3.1.

Corollary 2.1

Any disconnected squarefree graph with minimal vertex order 3 has at least 20

vertices, for it has two connected components, each with at least 10 vertices.

With 20 vertices, there are exactly 25 of these.

This justifies, at this stage, not checking for connectedness. Similarly, we believe

there are very few connected but not edge-biconnected graphs.

Now we can state our main computation.

Computation 2.4

Let Cn denote the number of non-010 colorable squarefree graphs with minimal

vertex order 3 on n nodes. Then:∗9

n ≤ 16 17 18 19 20 21

Cn 0 1 2 19 441 11876

All these 12339 graphs are not embeddable. See Computation 3.1.

The computation was distributed on approximately 300 CPU cores and took

roughly three months. It was executed as follows. We enumerated all squarefree

∗8 They are the first five graphs listed on: http://kochen-specker.info/smallGraphs/.

∗9 Source code at code/comp6 of 16).

http://kochen-specker.info/smallGraphs/


12 Sander Uijlen & Bas Westerbaan

graphs with minimal vertex order 3 on less than or equal 21 vertices∗10, using

the geng util of the nauty software package, which uses the isomorphism-free

exhaustive generation method of McKay8). The output of geng, we passed

through a custom heuristic backtracker written in C++ to decide 010-colorability

of these graphs.

§3 Embeddability
Our computation has yielded over nine-thousand non-010-colorable graphs.

If we show one of them is embeddable, we have found a new KS system. If we

demonstrate all of them are not embeddable, we have proven a lower bound on

the size of a minimal KS system.

In 2), Arends, Wampler and Ouaknine discuss several computer-aided

methods to test embeddability of a graph. None of these methods could decide

for all graphs considered, whether they were embeddable or not. We propose

a new method, which for all graphs we considered, could decide whether they

were embeddable or not. But first, we give two pen-and-paper proofs of the

non-embeddability of the following graph. These two pictures represent a single

connected graph of minimal vertex degree three. For presentation, some vertices

have been drawn twice.

18 3

100

5

12 9

13

14

46

15

11

16

1

7 17

2

8

14

8 1

4

13 7

1711

16

6 15

2

3.1 First pen-and-paper proof
Of the graphs of 19 vertices, the above graph was the the only not ex-

cluded by the unembeddable graphs known by AOW. In order to show that

this graph is not embeddable, we proceeded as follows. If the graph is embed-

dable, there is always an embedding such that the coordinates on the sphere of

some triangle in this graph are (1, 0, 0), (0, 1, 0) and (0, 0, 1). We chose to assign

these values to the points 0, 10 and 18, respectively. For each of these vertices,

∗10 On 21 vertices, we found 24,888,945,914,244 such graphs.
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any vertex adjacent to it must lie on a certain great circle. For example, we

can assign to the vertices 9 and 3, which are both connected to 18, the coor-

dinates (
√

1− x2,−x, 0) and (x,
√

1− x2, 0), for some x ∈ (−1, 1) and x 6= 0.

We find similar expressions for the coordinates of the other triangles contain-

ing the vertices 0, 10 and 18. The remaining vertices are assigned a variable

value on the sphere, where we always choose the component containing the

square-root positive, so we obtain coordinates of the form (a, b,
√

1− a2 − b2),

for a, b ∈ (−1, 0)∪ (0, 1). In this way we obtain no variables for the first triangle,

4 for attached triangles and then 16 for the left over vertices giving 20 unknowns.

The relations for these variables are given by the fact that the inner product of

the vectors should be zero if they are adjacent. Not counting the inner products

that are trivially zero, we obtain 24 equations. By tedious calculations, one de-

rives the equation x2(1− x2) = −1, which is not satisfiable. Hence this system

is not embeddable.

If we only consider the points used to obtain the contradiction, we find an

unembeddable subgraph of the system containing 13 vertices∗11. In the appendix

we included the derivation of contradiction. In theory, this approach can be

mechanically performed by a computer. However, there are too many variables

to solve this in reasonable time.

3.2 Second pen-and-paper proof
We give a second simpler pen-and-paper proof of the unembeddability

of the graph, by showing a subgraph is unembeddable.

w

v xz

p3 p4

p1

p2 p5

a

Fig. 3 One of the two minimal non-

embeddable graphs

Proposition 3.1

The graph in Figure 3 is not embeddable.

Proof Suppose it is embeddable. Consider

(the point associated to) p1. It is orthogonal to

both a and v. Since a and v are not collinear,

p1 must be collinear to v×a, the cross-product

of v and a. Similarly, p2 is collinear to v×p1 =

v×(v×a). Continuing in this fashion, walking

the circumference of the graph, we find

∗11 These are the vertices 0,2,3,4,6,8,9,10,13,14,15,17 and 18.
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a is collinear to x× (x× (w × (w × (v × (v × a))))). (1)

Now, we may assume that z = (0, 0, 1) and x = (1, 0, 0). Thus: v = (v1, v2, 0);

w = (w1, w2, 0) and a = (0, a2, a3) for some −1 ≤ v1, v2, w1, w2, a2, a3 ≤ 1,

with v21 + v22 = 1; w2
1 + w2

2 = 1 and a22 + a23 = 1. Now, (1) becomes: 0

a2

a3

 is collinear to

 0

−a2v1w2(v1w1 + v2w2)

−a3(v21w
2
1 + v21w

2
2 + v22w

2
1 + v22w

2
2)

 .

Consequently

v1w2(v1w1 + v2w2) = v21w
2
1 + v21w

2
2 + v22w

2
1 + v22w

2
2

= (v21 + v22)w2
1 + (v21 + v22)w2

2

= w2
1 + w2

2

= 1.

Since v and w are not collinear, we have by Cauchy-Schwarz | 〈v, w〉 | < 1. Thus

1 > |v1w2 〈v, w〉 | = |v1w2(v1w1 + v2w2)| = 1,

which is a contradiction. Apparently this graph is not embeddable.

3.3 An algorithm to decide embeddability
In the previous proof, we fixed, without loss of generality, the position

of a few vertices. Then we derived cross-product expressions for the remain-

ing vertices. Finally, we found an equation relating some of the cross-product

expressions and show it is unsatisfiable. We automate this reasoning as follows.

Algorithm 3.1

while there are unassigned vertices do

pick an unassigned vertex v

assign V (v) = v

mark v as free

5: while there are unassigned vertices adjacent to two distinct assigned do

pick such a vertex w adjacent to the assigned w1 and w2

assign V (w) = V (w1)× V (w2)

mark edges (v, w1) and (v, w2) as accounted for
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end while

10: end while

for each pair of vertices (v1, v2) do

if (v1, v2) is not an edge then

record requirement: “V (v1) is not collinear to V (v2)”

end if

15: end for

for each edge (v1, v2) not accounted for do

record requirement: “V (v1) is orthogonal to V (v2)”

end for

At two points in the algorithm, there is a choice which vertex to pick.

Depending on the vertices chosen, the number of recorded requirements and free

points may significantly vary. By considering all possible choices, one can find

the one with least free points.

The requirements can be mechanically converted to a formal sentence in

the language of the real numbers. This sentence is true if and only if the graph

is embeddable. Famously, Tarski proved15) that such sentences are decidable.

His decision procedure has an impractical complexity. However, its practical

value has been improved by, for instance, the method of cylindrical algebraic

decomposition4). We have used the redlog6) package of the reduce algebra system,

which implements a variant of Tarski’s quantifier elimination.∗12

Different assignments give different sentences. In our tests, some as-

signments would yield sentences that were decided within milliseconds, whereas

another assignment with less free vertices would yield a sentence that could not

be decided (directly). Therefore, when determining embeddability of a graph,

we try several assignments in parallel.

Using this algorithm, we could determine embeddability for most graphs

with less than 15 vertices. However, there were a few (010-colorable) graphs for

which the algorithm would not terminate and hence their embeddability was

not decided. By hand, we found with trial and error an embedding for some

of these graphs. Once we knew the troublesome graphs were embeddable, we

adapted the algorithm, as to guess for some assignments the position of one of

the vectors. If the corresponding sentence turns out false, we know nothing.

However, if the sentence is true, we know the graph is embeddable.

∗12 The reader can find the reduce script generated mechanically for the graph in Figure 3
here: http://kochen-specker.info/smallGraphs/49743f49514769444f.html.

http://kochen-specker.info/smallGraphs/49743f49514769444f.html
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With this method, we have decided in a day the embeddability of every

squarefree graph with minimal vertex order three of less than 15, except for

one.∗13 In particular:

Computation 3.1

Every squarefree graph of minimal vertex order three that is not 010-colorable of

order less than or equal 21 contains an unembeddable subgraph.∗14 In particular,

those of order less than or equal 20 contains, as a subgraph, one of the following

three graphs:

These three graphs are unembeddable. The left and middle graph are the only

minimal unembeddable squarefree graph. For the first graph, we have proven

directly that it is unembeddable. See Proposition 3.1. For the second graph, we

also have a similar direct proof. See Proposition B.1 in the appendix. The third

graph is shown to not be embeddable using our algorithm.

§4 Related work
This paper improves the lower bound of Arends, Ouaknine and Wampler1, 2)

on the size of a minimal Kochen-Specker system. Pavičić, Merlet, McKay

and Norman10) count the size of a Kochen-Specker system differently and have

demonstrated a different bound.

Definition 4.1

A Kochen-Specker graph is called complete if every edge is part of a triangle.

Pavičić et al have given a lower bound on the size of the minimal complete

∗13 A list of all squarefree graphs with minimal vertex order three of less than
15 vertices together with their embeddability can be found here: http://

kochen-specker.info/smallGraphs/. The graph for which we could not deter-
mine embeddability can be found here: http://kochen-specker.info/smallGraphs/

4d4b3f4b3f603f47414641654953625f3f.html.

∗14 A list of these graphs together with their unembeddable subgraphs, can be found here:
http://kochen-specker.info/candidates/. The source code for this computation can
be found at code/comp2.py of 16).

http://kochen-specker.info/smallGraphs/
http://kochen-specker.info/smallGraphs/
http://kochen-specker.info/smallGraphs/4d4b3f4b3f603f47414641654953625f3f.html
http://kochen-specker.info/smallGraphs/4d4b3f4b3f603f47414641654953625f3f.html
http://kochen-specker.info/candidates/
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Kochen-Specker system. Similar to our approach, they reduce the problem to

a question about discrete structures which can be considered as a subclass of

graphs. They discovered several uncolorable candidates of which they could

prove unembeddability using either symbolic computation or interval analysis.

Clearly, a bound on the minimal size of a KS system is also a bound

on the minimal size of a complete system. Conversely, a KS system can be

completed by adding missing vectors. However, it is not clear how many vectors

have to be added in general to complete the system. A history of the different

bounds on 3-dimensional Kochen-Specker systems is given in the table below.

Authors year KS complete KS

Kochen and Specker7) 1975 ≤ 117 ≤ 192

Penrose, Peres11) (independendly) 1991 ≤ 33 ≤ 57

Conway ∼1995 ≤ 31 ≤ 51

UW17) 2014 ≥ 22 ≥ 22

Pavičić et al.10) 2004 ? ≥ 30
Fig. 4 A history of the bounds on the size of the minimal (complete) three-dimensional

Kochen-Specker system.

§5 Conclusion and future research
Arends, Ouaknine and Wampler struggled with two problems: enumer-

ating candidate graphs of less than 31 vertices and testing their embeddability.

We have verified most of their computations. Then we enumerated all candidate

graphs up to and including 21 vertices. Furthermore, we have proposed a new

decision procedure, which was able to decide embeddability for all candidate

graphs we found. Therefore, we demonstrate: a Kochen-Specker system must

have at least 22 points.∗15

Enumerating all candidate graphs of less than 31 vertices is computa-

tionally infeasible. To bridge the enormous the gap between 22 and 31, requires

a new insight. Most likely, this would be a new practical restriction on which

graphs to consider. In particular (following Prop. 2.2) a fast algorithm to enu-

merate square-free graphs of minimal vertex order three where each node is part

of a triangle, would probably allow to test for KS-systems up to and including

24 vertices.

The Reader, interested in pursuing this line of research, is encouraged

∗15 The authors have a wager whether there is a minimal KS system of less than 25 vertices.
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to read the master thesis1) of Arends, in which he discusses in detail several

other properties that a minimal KS system must enjoy, as well as some failed

attempts.
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§ Appendix

A Original pen-and-paper proof
In this appendix, we show by hand, that indeed the 19 vertex graph

considered at the start of section 3 is not embeddable. We restrict the calculation

to the 13-vertex unembeddable subgraph.

0
(1, 0, 0)

6
(0, x3, ·)

15
(0, ·, -x3)

3
(·, -x1, 0)8

(g, h, ·)

13
(e, f, ·)

10
(0, 1, 0)

4
(x2, 0, ·)

14
(·, 0, -x2) 9

(x1, ·, 0)

2
(a, b, ·)

17
(c, d, ·)

18
(0, 0, 1)

This is the subgraph and we have given the vertices names corresponding

to the original, 19 vertex, graph. Below each name is a coordinate on the sphere

(whenever there is a · in the coordinate, we mean that this component of the

coordinate is fixed by the other components, as it must be a point on the sphere,

where we take this · to be the positive square root).

Now if two vertices are connected via an edge, we have that the inner

product of their coordinates is zero. Vertices connected to the points 0,10 and
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18 are trivially zero. The non trivial equations then become:

ax1 + b
√

1− x12 = 0 (2)

cx1 + d
√

1− x12 = 0 (3)

e
√

1− x12 − fx1 = 0 (4)

g
√

1− x12 − hx1 = 0 (5)

g
√

1− x22 − x2
√

1− g2 − h2 = 0 (6)

cx2 +
√

1− x22
√

1− c2 − d2 = 0 (7)

b
√

1− x32 − x3
√

1− a2 − b2 = 0 (8)

fx3 +
√

1− e2 − f2
√

1− x32 = 0 (9)

ac+ bd+
√

1− a2 − b2
√

1− c2 − d2 = 0 (10)

eg + fh+
√

1− e2 − f2
√

1− g2 − h2 = 0 (11)

From the equations containing only x1 we can eliminate four variables.

b =
−ax1√
1− x12

(1’)

d =
−cx1√
1− x12

(2’)

e =
fx1√

1− x12
(3’)

g =
hx1√

1− x12
(4’)

Note that this is possible since all xi ∈ (−1, 1)\{0} since otherwise we would

have coinciding coordinates of vertices in the graph.

Substituting these expressions in the other six equations and using that x
1−x+

1 = 1
1−x , we obtain:
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hx1√
1− x12

√
1− x22 − x2

√
1− h2

1− x12
= 0 (5’)

cx2 +
√

1− x22
√

1− c2

1− x12
= 0 (6’)

−ax1√
1− x12

√
1− x32 − x3

√
1− a2

1− x12
= 0 (7’)

fx3 +

√
1− f2

1− x12
√

1− x32 = 0 (8’)

ac+
−ax1√
1− x12

−cx1√
1− x12

+

√
1− a2

1− x12

√
1− c2

1− x12
= 0 (9’)

fx1√
1− x12

hx1√
1− x12

+ fh+

√
1− f2

1− x12

√
1− h2

1− x12
= 0 (10’)

These can then almost trivially be rewritten to:

hx1
√

1− x22 − x2
√

1− x12 − h2 = 0 (5”)

cx2
√

1− x12 +
√

1− x22
√

1− x12 − c2 = 0 (6”)

ax1
√

1− x32 + x3
√

1− x12 − a2 = 0 (7”)

fx3
√

1− x12 +
√

1− x12 − f2
√

1− x32 = 0 (8”)

ac+
√

1− x12 − a2
√

1− x12 − c2 = 0 (9”)

fh+
√

1− x12 − f2
√

1− x12 − h2 = 0 (10”)

It then follows from (7”), (9”) and (6”) that:

√
1− x32
x3

=
−
√

1− x12 − a2
ax1

=
c

x1
√

1− x12 − c2

=
−
√

1− x22

x1x2
√

1− x12
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While using (5”),(10”) and (8”) we find that:

√
1− x22
x2

=

√
1− x12 − h2

hx1

=
−f

x1
√

1− x12 − f2

=

√
1− x32

x1x3
√

1− x12

Inserting this expression for

√
1− x22
x2

into the expression for

√
1− x32
x3

we obtain the equation:

√
1− x32
x3

=
−
√

1− x32
x3x12(1− x12)

(12)

But then, eliminating the x3 terms we find:

x1
2(1− x12) = −1 (13)

Which is our desired contradiction.

B Second cross-product unembeddability proof

x

w

y

v

z

p5

p1

p4

p2

p3

Proposition B.1

The graph on the right is not embeddable.

Proof Suppose it is embeddable. Note

(the point associated to) p5 is orthogonal to

(the points associated to) v and w. As v 6= w,

we see p5 is collinear to cross-product v ×w.

Similarly, we derive

p1 coll. x× (v × w) p4 coll. w × z

p2 coll. x× (x× v × w) p3 coll. w × (w × z)

p3 coll. (w × z)× (x× (x× (v × w)))

And thus

(w × (w × z))× ((w × z)× (x× (x× (v × w)))) = 0. (14)
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By rotating the embedding, we may assume without loss of generality that we

have z = (0, 0, 1), y = (0, 1, 0) and x = (1, 0, 0). Write

v =
(
v1, 0,

√
1− v21

)
w =

(
w1, w2,

√
1− w2

1 − w2
2

)
.

Now, equation 14 becomes

w2
2

(
v1 −

√
1− v21w1

√
1− w2

1 − w2
2

)
= 0

w1w2

(√
1− v21w1

√
1− w2

1 − w2
2 − v1

)
= 0.

Note w1 6= 0, for otherwise w would be orthogonal to x, which would imply w =

y, quod non. Similarly w2 6= 0, for otherwise w would be orthogonal to y and

then v = p4, quod non. And finally, v1 6= 0, for otherwise v would be orthogonal

to x and then x = p5, quod non. It follows

v1 =
√

1− v21w1

√
1− w2

1 − w2
2.

As v is orthogonal to w, we have −v1w1 =
√

1− v21
√

1− w2
1 − w2

2. Substituting

this in the previous equation, we get v1 = −v1w2
1. That is: w2

1 = −1, which is

absurd. Apparently, the graph cannot be embeddable.
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