States of Convex Sets

Bart Jacobs Bas Westerbaan Bram Westerbaan
bart@cs.ru.nl bwesterb@cs.ru.nl awesterb@cs.ru.nl
Radboud University Nijmegen

April 14, 2015

States of Convex Sets

Bart Jacobs Bas Westerbaan Bram Westerbaan
bart@cs.ru.nl bwesterb@cs.ru.nl awesterb@cs.ru.nl
Radboud University Nijmegen

April 14, 2015

The categorical quantum logic group in Nijmegen

The categorical quantum logic group in Nijmegen

What we do in Nijmegen

1. The semantics and logic of quantum computation.

What we do in Nijmegen

1. The semantics and logic of quantum computation.
2. Focus on the common ground between the classical, probabilistic and quantum setting (States, predicates, ...)

What we do in Nijmegen

1. The semantics and logic of quantum computation.
2. Focus on the common ground between the classical, probabilistic and quantum setting (States, predicates, ...)

In contrast to the friendly
competition at Oxford: they emphasize to axiomatize what is unique and non-classical about quantum mechanics.

What we do in Nijmegen

1. The semantics and logic of quantum computation.
2. Focus on the common ground between the classical, probabilistic and quantum setting (States, predicates, ...)
3. Identify relevant structure (Effect algebras, ...)

What we do in Nijmegen

1. The semantics and logic of quantum computation.
2. Focus on the common ground between the classical, probabilistic and quantum setting (States, predicates, ...)
3. Identify relevant structure (Effect algebras, ...)
4. Organise it with category theory and formal logic.

What we do in Nijmegen

1. The semantics and logic of quantum computation.
2. Focus on the common ground between the classical, probabilistic and quantum setting (States, predicates, ...)
3. Identify relevant structure (Effect algebras, ...)
4. Organise it with category theory and formal logic.
5. Ambition: to make quantum computation more accessible to existing methods and techniques (of categorical logic, ...)

What we do in Nijmegen

1. The semantics and logic of quantum computation.
2. Focus on the common ground between the classical, probabilistic and quantum setting (States, predicates, ...)
3. Identify relevant structure (Effect algebras, ...)
4. Organise it with category theory and formal logic.
5. Ambition: to make quantum computation more accessible to existing methods and techniques (of categorical logic, ...)
6. On the horizon: a categorical toolkit including a type theory to formally verify quantum programs.

What we do in Nijmegen

1. The semantics and logic of quantum computation.
2. Focus on the common ground between the classical, probabilistic and quantum setting (States, predicates, ...)
3. Identify relevant structure (Effect algebras, ...)
4. Organise it with category theory and formal logic.
5. Ambition: to make quantum computation more accessible to existing methods and techniques (of categorical logic, ...)
6. On the horizon: a categorical toolkit including a type theory to formally verify quantum programs.
7. In this paper ...

What we do in Nijmegen

1. The semantics and logic of quantum computation.
2. Focus on the common ground between the classical, probabilistic and quantum setting (States, predicates, ...)
3. Identify relevant structure (Effect algebras, ...)
4. Organise it with category theory and formal logic.
5. Ambition: to make quantum computation more accessible to existing methods and techniques (of categorical logic, ...)
6. On the horizon: a categorical toolkit including a type theory to formally verify quantum programs.
7. In this paper ... some advances on state spaces

What we do in Nijmegen

1. The semantics and logic of quantum computation.
2. Focus on the common ground between the classical, probabilistic and quantum setting (States, predicates, ...)
3. Identify relevant structure (Effect algebras, ...)
4. Organise it with category theory and formal logic.
5. Ambition: to make quantum computation more accessible to existing methods and techniques (of categorical logic, ...)
6. On the horizon: a categorical toolkit including a type theory to formally verify quantum programs.
7. In this paper ... some advances on state spaces, but we'll come to that!

Oxford \& Nijmegen

Setting

Classical : Probabilistic : Quantum

Setting

$$
\begin{array}{ccccc}
\text { Classical } & : & \text { Probabilistic } & : & \text { Quantum } \\
\text { Sets } & : & \operatorname{K\ell }(\mathcal{D}) & : & \mathbf{v N}^{\text {op }}
\end{array}
$$

Setting

Classical : Probabilistic : Quantum

Sets : $\quad \operatorname{K\ell }(\mathcal{D}) \quad: \quad \mathbf{v N}^{\text {op }}$
sets with maps
sets with
probabilistic maps

von Neumann algebras
with c.p. unital
normal linear maps

Logic?

$$
\begin{array}{ccc}
\text { Sets } & \operatorname{K\ell }(\mathcal{D}) & \mathbf{v N}^{\mathrm{op}} \\
\text { classical } & \text { probabilistic } & \text { quantum }
\end{array}
$$

topos?

Logic?

Sets $\quad \mathcal{K} \ell(\mathcal{D}) \quad \mathbf{v N} \mathbf{N}^{\mathrm{op}}$

classical probabilistic quantum
topos? $\checkmark \quad x$

Logic?

Sets $\quad \operatorname{Kl}(\mathcal{D}) \quad \mathbf{v} \mathbf{N}^{\mathrm{op}}$
classical probabilistic quantum

Sets $\mathcal{K} \ell(\mathcal{D})$ $\mathbf{v N}^{\mathrm{op}}$classical probabilistic quantum
topos?

CCC?

x

effectus*

*Effectus

An effectus is a category with finite coproducts and 1 such that

*Effectus

An effectus is a category with finite coproducts and 1 such that

- these diagrams are pullbacks:

*Effectus

An effectus is a category with finite coproducts and 1 such that

- these diagrams are pullbacks:

- these arrows are jointly monic:

$$
X+X+X \underset{\left[\kappa_{2}, \kappa_{1}, \kappa_{2}\right]}{\left[\kappa_{1}, \kappa_{2}, \kappa_{2}\right]} X+X
$$

An effectus is a category with finite coproducts and 1 such that

- these diagrams are pullbacks:

- these arrows are jointly monic:

$$
X+X+X \underset{\left[\kappa_{2}, \kappa_{1}, \kappa_{2}\right]}{\left[\kappa_{1}, \kappa_{2}, \kappa_{2}\right]} X+X
$$

(Rather weak assumptions!)

Internal logic

$$
\begin{array}{ll}
\text { effectus } & \text { meaning } \\
\text { objects } & \text { types } \\
\text { arrows } & \text { programs }
\end{array}
$$

Internal logic

$$
\begin{array}{ll}
\text { effectus } & \text { meaning } \\
\hline \text { objects } & \text { types } \\
\text { arrows } & \text { programs } \\
1 \text { (final object) } & \text { singleton/unit type }
\end{array}
$$

Internal logic

$$
\begin{array}{ll}
\text { effectus } & \text { meaning } \\
\hline \text { objects } & \text { types } \\
\text { arrows } & \text { programs } \\
1 \text { (final object) } & \text { singleton/unit type } \\
1 \xrightarrow{\omega} X &
\end{array}
$$

Internal logic

$$
\begin{array}{ll}
\text { effectus } & \text { meaning } \\
\hline \text { objects } & \text { types } \\
\text { arrows } & \text { programs } \\
1 \text { (final object) } & \text { singleton/unit type } \\
1 \xrightarrow{\omega} X & \text { state }
\end{array}
$$

Internal logic

$$
\begin{array}{ll}
\text { effectus } & \text { meaning } \\
\hline \text { objects } & \text { types } \\
\text { arrows } & \text { programs } \\
1 \text { (final object) } & \text { singleton/unit type } \\
1 \stackrel{\omega}{\infty} X & \text { state } \\
X \xrightarrow{p} 1+1 &
\end{array}
$$

Internal logic

$$
\begin{array}{ll}
\text { effectus } & \text { meaning } \\
\hline \text { objects } & \text { types } \\
\text { arrows } & \text { programs } \\
1 \text { (final object) } & \text { singleton/unit type } \\
1 \stackrel{\omega}{\longrightarrow} X & \text { state } \\
X \xrightarrow{p} 1+1 & \text { predicate }
\end{array}
$$

Internal logic

$$
\begin{array}{ll}
\text { effectus } & \text { meaning } \\
\hline \text { objects } & \text { types } \\
\text { arrows } & \text { programs } \\
1 \text { (final object) } & \text { singleton/unit type } \\
1 \stackrel{\omega}{\longrightarrow} X & \text { state } \\
X \xrightarrow{p} 1+1 & \text { predicate } \\
1 \xrightarrow[\omega F p]{\omega} X \xrightarrow{p} 1+1 & \text { validity }
\end{array}
$$

Internal logic

$$
\begin{array}{ll}
\text { effectus } & \text { meaning } \\
\hline \text { objects } & \text { types } \\
\text { arrows } & \text { programs } \\
1 \text { (final object) } & \text { singleton/unit type } \\
1 \xrightarrow{\omega} X & \text { state } \\
X \xrightarrow{p} 1+1 & \text { predicate } \\
1 \stackrel{\omega}{\longrightarrow} X \xrightarrow[\omega F p]{p} 1+1 & \text { validity } \\
1 \xrightarrow[\longrightarrow]{\lambda} 1+1 & \text { scalar }
\end{array}
$$

Examples of states and predicates

$$
\begin{array}{cccc}
\text { State } & \text { Predicate } & \text { Validity } & \text { Scalars } \\
1 \xrightarrow{\omega} X & X \xrightarrow{p} 1+1 & \omega \vDash p & 1 \rightarrow 1+1
\end{array}
$$

Examples of states and predicates

	State	Predicate	Validity	Scalars
	$1 \xrightarrow{\omega} X$	$X \xrightarrow{p} 1+1$	$\omega \vDash p$	$1 \rightarrow 1+1$
classical				
Sets	$\substack{\text { element } \\ \omega \in X}$			
SoX				

Examples of states and predicates

	State	Predicate	Validity	Scalars
	$1 \xrightarrow{\omega} X$	$X \xrightarrow{p} 1+1$	$\omega \vDash p$	$1 \rightarrow 1+1$
classical	element $\omega \in X$ Sets $\omega \in X$ subset $p \subseteq X$			
	p			

Examples of states and predicates

	State	Predicate	Validity	Scalars
	$1 \xrightarrow{\omega} X$	$X \xrightarrow{p} 1+1$	$\omega \vDash p$	$1 \rightarrow 1+1$
classical	element $\omega \in X$ Sets $\omega \in X$ subset	$p \subseteq X$	$\omega \in p$	$\{0,1\}$

Examples of states and predicates

	State	Predicate	Validity	Scalars
	$1 \xrightarrow{\omega} X$	$x \xrightarrow{p} 1+1$	$\omega \vDash p$	$1 \rightarrow 1+1$
Slassical	$\begin{aligned} & \text { element } \\ & \omega \in X \end{aligned}$	$\begin{aligned} & \text { subset } \\ & p \subseteq X \end{aligned}$	$\omega \in p$	$\{0,1\}$
$\begin{aligned} & \text { robabilistic } \\ & \mathcal{K} \ell(\mathcal{D}) \end{aligned}$	$\omega \equiv \sum_{i}{ }_{i} s_{i}\left\|x_{i}\right\rangle$			

Examples of states and predicates

$$
\begin{array}{ccccc}
\text { State } & \text { Predicate } & \text { Validity } & \text { Scalars } \\
& 1 \xrightarrow{\omega} X & X \xrightarrow{p} 1+1 & \omega \vDash p & 1 \rightarrow 1+1 \\
\text { classical } & \text { element } & \text { subset } & & \\
\text { Sets } & \omega \in X & p \subseteq X & \omega \in p & \{0,1\} \\
\text { probabilistic } & \text { distribution } & \text { fuzzy subset } & & \\
\operatorname{K\ell }(\mathcal{D}) & \omega \equiv \sum_{i} s_{i}\left|x_{i}\right\rangle & X \xrightarrow{p}[0,1] & &
\end{array}
$$

Examples of states and predicates

	State	Predicate	Validity	Scalars
	$1 \xrightarrow{\omega} X$	$x \xrightarrow{p} 1+1$	$\omega \vDash p$	$1 \rightarrow 1+1$
classical Sets	$\begin{aligned} & \text { element } \\ & \omega \in X \end{aligned}$	$\begin{aligned} & \text { subset } \\ & p \subseteq \end{aligned}$	$\omega \in p$	$\{0,1\}$
$\begin{aligned} & \text { probabilistic } \\ & \text { Ke(D) } \end{aligned}$	$\omega \equiv \sum_{i} s_{i}\left\|x_{i}\right\rangle$	$\begin{aligned} & \text { fuzzy subset } \\ & X \xrightarrow{p}[0,1] \end{aligned}$	$\sum_{i} s_{i} p\left(x_{i}\right)$	$[0,1]$

Examples of states and predicates

	State	Predicate	Validity	Scalars
	$1 \xrightarrow{\omega} X$	$x \xrightarrow{p} 1+1$	$\omega \vDash p$	$1 \rightarrow 1+1$
classical Sets	$\begin{aligned} & \text { element } \\ & \omega \in X \end{aligned}$	$\begin{aligned} & \text { subset } \\ & p \subseteq X \end{aligned}$	$\omega \in p$	$\{0,1\}$
$\begin{gathered} \text { probabilistic } \\ \mathcal{K}(\mathcal{D}) \end{gathered}$	$\omega \stackrel{\text { distribution }}{\equiv \sum_{i} s_{i}\left\|x_{i}\right\rangle}$	$\begin{aligned} & \text { fuzzy subset } \\ & X \xrightarrow{\longrightarrow}[0,1] \end{aligned}$	$\sum_{i} s_{i} p\left(x_{i}\right)$	[0, 1]
$\mathbf{v N} \mathbf{N P}^{\circ p}$	$\begin{aligned} & \text { normal state } \\ & \omega: X \end{aligned}$			

Examples of states and predicates

	State	Predicate	Validity	Scalars
	$1 \xrightarrow{\omega} X$	$x \xrightarrow{p} 1+1$	$\omega \vDash p$	$1 \rightarrow 1+1$
$\xrightarrow{\text { classical }}$ Sets	$\begin{aligned} & \text { element } \\ & \omega \in X \end{aligned}$	$\begin{aligned} & \text { subset } \\ & p \subseteq X \end{aligned}$	$\omega \in p$	$\{0,1\}$
$\begin{aligned} & \text { probabilistic } \\ & \mathcal{K} \ell(\mathcal{D}) \end{aligned}$	$\omega \equiv \sum_{i} s_{i}\left\|x_{i}\right\rangle$	$\begin{aligned} & \text { fuzzy subset } \\ & X \xrightarrow{\circ}[0,1] \end{aligned}$	$\sum_{i} s_{i} p\left(x_{i}\right)$	$[0,1]$
$\begin{aligned} & \text { quantum } \\ & \mathbf{v N} \mathbf{N O}^{\text {op }} \end{aligned}$	$\begin{aligned} & \text { normal state } \\ & \omega: X \rightarrow \mathbb{C} \end{aligned}$	$\begin{aligned} & 0 \leq p \leq 1 \\ & 0 \leq p \leq e c t \end{aligned}$		

Examples of states and predicates

	State	Predicate	Validity	Scalars
	$1 \xrightarrow{\omega} X$	$x \xrightarrow{p} 1+1$	$\omega \vDash p$	$1 \rightarrow 1+1$
classical Sets	$\begin{aligned} & \text { element } \\ & \omega \in X \end{aligned}$	$\begin{aligned} & \text { subset } \\ & p \subseteq X \end{aligned}$	$\omega \in p$	$\{0,1\}$
$\begin{aligned} & \text { probabilistic } \\ & \mathcal{K \ell}(\mathcal{D}) \end{aligned}$	$\omega \xlongequal{\text { distribution }} \sum_{i} s_{i}\left\|x_{i}\right\rangle$	$\begin{aligned} & \text { fuzzy subset } \\ & X \xrightarrow{P}[0,1] \end{aligned}$	$\sum_{i} s_{i} p\left(x_{i}\right)$	$[0,1]$
$\mathbf{v N} \mathbf{N}^{\mathrm{op}}$	$\begin{aligned} & \text { normal state } \\ & \omega: X \rightarrow \mathbb{C} \end{aligned}$	$\begin{aligned} & 0 \stackrel{\text { effect }}{\leq} p \leq 1 \end{aligned}$	$\omega(p)$	[0, 1]

Structure on states and predicates

Structure on states and predicates

1. Predicates on X form an effect module (\approx an ordered vector space restricted to $[0,1]$)

Structure on states and predicates

1. Predicates on X form an effect module (\approx an ordered vector space restricted to $[0,1]$)
2. States on X form an convex set ($=$ algebra for the distribution monad

Structure on states and predicates

1. Predicates on X form an effect module (\approx an ordered vector space restricted to $[0,1]$)
2. States on X form an convex set ($=$ algebra for the distribution monad)
3. The scalars form an effect monoid M.

Structure on states and predicates

1. Predicates on X form an effect module over M $(\approx$ an ordered vector space over M restricted to $[0,1])$
2. States on X form an convex set over M (= algebra for the distribution monad over M)
3. The scalars form an effect monoid M.

Structure on states and predicates

1. Predicates on X form an effect module over M $(\approx$ an ordered vector space over M restricted to $[0,1])$
2. States on X form an convex set over M (= algebra for the distribution monad over M)
3. The scalars form an effect monoid M.

Examples of operatorions on states and predicates

- Negation of predicate: $X \xrightarrow[\neg p]{p} 1+1 \xrightarrow{\left[\kappa_{2}, \kappa_{1}\right]} 1+1$

Examples of operatorions on states and predicates

- Negation of predicate: $X \xrightarrow[\neg p]{p} 1+1 \xrightarrow{\left[\kappa_{2}, \kappa_{1}\right]} 1+1$
- Convex combination of states $1 \xrightarrow[\lambda \omega+(1-\lambda) \varrho]{\lambda} 1+1 \xrightarrow{[\omega, \varrho]} X$

Examples of operatorions on states and predicates

- Negation of predicate: $X \underset{\neg p}{p} 1+1 \xrightarrow{\left[\kappa_{2}, \kappa_{1}\right]} 1+1$
- Convex combination of states $1 \underset{\lambda \omega+(1-\lambda) \varrho}{\lambda} 1+1 \xrightarrow{[\omega, \varrho]} X$
- Predicates p, q are summable whenever there is a b such that

and then their sum is given by $p \otimes q=\left[\kappa_{1}, \kappa_{1}, \kappa_{2}\right] \circ b$.

Two problems?

Two problems?

1. $\mathbf{E M o d}_{M}^{\mathrm{op}}$ is an effectus; Pred: $\mathbf{C} \rightarrow \mathbf{E M o d}_{M}^{\mathrm{op}}$ preserves + .

Two problems?

1. $\mathbf{E M o d}_{M}^{\mathrm{op}}$ is an effectus; Pred: $\mathbf{C} \rightarrow \mathbf{E M o d}_{M}^{\mathrm{op}}$ preserves + .
2. Conv_{M} is not an effectus; Stat: $\mathbf{C} \rightarrow \operatorname{Conv}_{M}$ does not always preserve coproducts.

Two problems?

1. $\mathbf{E M o d}_{M}^{\mathrm{op}}$ is an effectus; Pred: $\mathbf{C} \rightarrow \mathbf{E M o d}_{M}^{\mathrm{op}}$ preserves + .
2. Conv_{M} is not an effectus; Stat: $\mathbf{C} \rightarrow \operatorname{Conv}_{M}$ does not always preserve coproducts.

So what?

Two problems?

1. $\mathbf{E M o d}_{M}^{\mathrm{op}}$ is an effectus; Pred: $\mathbf{C} \rightarrow \mathbf{E M o d}_{M}^{\mathrm{op}}$ preserves + .
2. Conv_{M} is not an effectus; Stat: $\mathbf{C} \rightarrow \operatorname{Conv}_{M}$ does not always preserve coproducts.

So what? They block treating conditional probability in an effectus.

Cancellative Convex Sets

Cancellative Convex Sets

This is a convex set over $[0,1]$

1. (that is, algebra for the distrubution monad over $[0,1])$:

Cancellative Convex Sets

This is a convex set over $[0,1]$

1. (that is, algebra for the distrubu-

$$
1_{0}
$$

tion monad over $[0,1])$:

2. A convex set A is cancellative if for $\lambda \neq 1$, $\lambda x+(1-\lambda) y_{1}=\lambda x+(1-\lambda) y_{2} \quad \Longrightarrow \quad y_{1}=y_{2}$.

Cancellative Convex Sets

This is a convex set over $[0,1]$

1. (that is, algebra for the distrubu-
tion monad over $[0,1]$):

$$
1_{0}
$$

2. A convex set A is cancellative if for $\lambda \neq 1, \quad 1_{1}$ $\lambda x+(1-\lambda) y_{1}=\lambda x+(1-\lambda) y_{2} \quad \Longrightarrow \quad y_{1}=y_{2}$.
3. Theorem For a convex set A over $[0,1]$ t.f.a.e.
$3.1 A$ is cancellative;

Cancellative Convex Sets

This is a convex set over $[0,1]$

1. (that is, algebra for the distrubu-
tion monad over $[0,1]$):
1_{0}
2. A convex set A is cancellative if for $\lambda \neq 1, \quad 1_{1}$ $\lambda x+(1-\lambda) y_{1}=\lambda x+(1-\lambda) y_{2} \quad \Longrightarrow \quad y_{1}=y_{2}$.
3. Theorem For a convex set A over $[0,1]$ t.f.a.e.
3.1 A is cancellative;
$3.2\left[\kappa_{1}, \kappa_{2}, \kappa_{2}\right],\left[\kappa_{2}, \kappa_{1}, \kappa_{2}\right]: A+A+A \longrightarrow A+A$ are jointly injective;

Cancellative Convex Sets

This is a convex set over $[0,1]$

1. (that is, algebra for the distrubution monad over $[0,1])$:
1_{0}

0
2. A convex set A is cancellative if for $\lambda \neq 1, \quad 1_{1}$ $\lambda x+(1-\lambda) y_{1}=\lambda x+(1-\lambda) y_{2} \quad \Longrightarrow \quad y_{1}=y_{2}$.
3. Theorem For a convex set A over $[0,1]$ t.f.a.e.
3.1 A is cancellative;
$3.2\left[\kappa_{1}, \kappa_{2}, \kappa_{2}\right],\left[\kappa_{2}, \kappa_{1}, \kappa_{2}\right]: A+A+A \longrightarrow A+A$ are jointly injective;
3.3 A is isomorphic to a convex subset of a real vector space.

Cancellative Convex Sets

This is a convex set over $[0,1]$

1. (that is, algebra for the distrubution monad over $[0,1])$:
2. A convex set A is cancellative if for $\lambda \neq 1$, $\lambda x+(1-\lambda) y_{1}=\lambda x+(1-\lambda) y_{2} \quad \Longrightarrow \quad y_{1}=y_{2}$.
3. Theorem For a convex set A over $[0,1]$ t.f.a.e.
3.1 A is cancellative;
$3.2\left[\kappa_{1}, \kappa_{2}, \kappa_{2}\right],\left[\kappa_{2}, \kappa_{1}, \kappa_{2}\right]: A+A+A \longrightarrow A+A$ are jointly injective;
3.3 A is isomorphic to a convex subset of a real vector space.
4. The full subcategory $\operatorname{Conv}_{[0,1]}$ of $\operatorname{Conv}_{[0,1]}$ of cancellative convex sets over $[0,1]$ is an effectus!

Normalisation

Stat: $\mathbf{C} \longrightarrow \mathbf{C O n v}_{[0,1]}$ preserves coproducts if \ldots

Normalisation

Stat: $\mathbf{C} \longrightarrow$ Conv $_{[0,1]}$ preserves coproducts if \ldots
C has normalisation:

Normalisation

Stat: $\mathbf{C} \longrightarrow$ Conv $_{[0,1]}$ preserves coproducts if \ldots
C has normalisation:
For every $1 \xrightarrow{\sigma} X+1$ with $\sigma \neq \kappa_{2}$ there is a unique $1 \xrightarrow{\omega} X$ such that the following diagram commutes.

Conclusion and references

1. Every category above is an effectus; every functor above preserves coproducts.

Conclusion and references

1. Every category above is an effectus; every functor above preserves coproducts.
2. For the relation with conditional probability, see Section 6 of the paper.

Conclusion and references

1. Every category above is an effectus; every functor above preserves coproducts.
2. For the relation with conditional probability, see Section 6 of the paper.
3. For more about effectuses:

Bart Jacobs, New Directions in Categorical Logic, [...], arXiv:1205.3940v3.

