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What we do in Nijmegen

1. The semantics and logic of quantum computation.

2. Focus on the common ground between the classical,
probabilistic and quantum setting (States, predicates, ...)

3. Identify relevant structure (Effect algebras, ...)

4. Organise it with category theory and formal logic.

5. Ambition: to make quantum computation more accessible to
existing methods and techniques (of categorical logic, ...)

6. On the horizon: a categorical toolkit including a type theory
to formally verify quantum programs.

7. In this paper ...

some advances on state spaces,
but we’ll come to that!
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Examples of states and predicates

State Predicate Validity Scalars

1
ω→ X X

p→ 1 + 1 ω � p 1→ 1 + 1

classical
Sets

element
ω ∈ X

subset
p ⊆ X ω ∈ p {0, 1}

probabilistic

K̀ (D)
distribution

ω ≡
∑

i si |xi 〉
fuzzy subset

X
p→ [0, 1]

∑
i sip(xi ) [0, 1]

quantum

vNop
normal state
ω : X → C

effect
0 ≤ p ≤ I ω(p) [0, 1]
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1. Predicates on X form an effect module

over M

(≈ an ordered vector space

over M

restricted to [0, 1])

2. States on X form an convex set

over M

(= algebra for the distribution monad

over M

)

3. The scalars form an effect monoid M.
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> ConvM
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C
Pred

bb
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Examples of operatorions on states and predicates

I Negation of predicate: X
p //

¬p
221 + 1

[κ2,κ1]// 1 + 1

I Convex combination of states 1
λ //

λω+(1−λ)%

221 + 1
[ω,%] // X

I Predicates p, q are summable whenever there is a b such that

X
p

yy

q

&&
b
��

1 + 1 1 + 1 + 1
[κ1,κ2,κ2]
oo

[κ2,κ1,κ2]
// 1 + 1

and then their sum is given by p > q = [κ1, κ1, κ2] ◦ b.
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EModop
M

Stat ,,
> ConvM

Pred
ll

C
Pred

bb
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==

1. EModop
M is an effectus; Pred : C→ EModop

M preserves +.

2. ConvM is not an effectus; Stat : C→ ConvM does not
always preserve coproducts.

So what? They block treating conditional probability in an effectus.
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Cancellative Convex Sets

1.
0

10

11

This is a convex set over [0, 1]
(that is, algebra for the distrubu-
tion monad over [0, 1]):

2. A convex set A is cancellative if for λ 6= 1,
λx + (1− λ)y1 = λx + (1− λ)y2 =⇒ y1 = y2.

3. Theorem For a convex set A over [0, 1] t.f.a.e.

3.1 A is cancellative;

3.2 [κ1, κ2, κ2], [κ2, κ1, κ2] : A + A + A −→ A + A
are jointly injective;

3.3 A is isomorphic to a convex subset of a real vector space.

4. The full subcategory CConv[0,1] of Conv[0,1] of cancellative
convex sets over [0, 1] is an effectus!
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convex sets over [0, 1] is an effectus!
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Normalisation

Stat : C −→ CConv[0,1] preserves coproducts if ...
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ω→ X such
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Conclusion and references

EModop
[0,1]

Stat --
> CConv[0,1]

Pred
mm

C
Pred

cc

Stat

;;

1. Every category above is an effectus;
every functor above preserves coproducts.

2. For the relation with conditional probability,
see Section 6 of the paper.

3. For more about effectuses:
Bart Jacobs, New Directions in Categorical Logic, [...],
arXiv:1205.3940v3.
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