
States of Convex Sets

Bart Jacobs
bart@cs.ru.nl

Bas Westerbaan
bwesterb@cs.ru.nl

Bram Westerbaan
awesterb@cs.ru.nl

Radboud University Nijmegen

April 14, 2015



States of Convex Sets

Bart Jacobs
bart@cs.ru.nl

Bas Westerbaan
bwesterb@cs.ru.nl

Bram Westerbaan
awesterb@cs.ru.nl

Radboud University Nijmegen

April 14, 2015



The categorical quantum logic group in Nijmegen



The categorical quantum logic group in Nijmegen



What we do in Nijmegen

1. The semantics and logic of quantum computation.

2. Focus on the common ground between the classical,
probabilistic and quantum setting (States, predicates, ...)

3. Identify relevant structure (Effect algebras, ...)

4. Organise it with category theory and formal logic.

5. Ambition: to make quantum computation more accessible to
existing methods and techniques (of categorical logic, ...)

6. On the horizon: a categorical toolkit including a type theory
to formally verify quantum programs.

7. In this paper ...

some advances on state spaces,
but we’ll come to that!



What we do in Nijmegen

1. The semantics and logic of quantum computation.

2. Focus on the common ground between the classical,
probabilistic and quantum setting (States, predicates, ...)

3. Identify relevant structure (Effect algebras, ...)

4. Organise it with category theory and formal logic.

5. Ambition: to make quantum computation more accessible to
existing methods and techniques (of categorical logic, ...)

6. On the horizon: a categorical toolkit including a type theory
to formally verify quantum programs.

7. In this paper ...

some advances on state spaces,
but we’ll come to that!



What we do in Nijmegen

1. The semantics and logic of quantum computation.

2. Focus on the common ground between the classical,
probabilistic and quantum setting (States, predicates, ...)

3. Identify relevant structure (Effect algebras, ...)

4. Organise it with category theory and formal logic.

5. Ambition: to make quantum computation more accessible to
existing methods and techniques (of categorical logic, ...)

6. On the horizon: a categorical toolkit including a type theory
to formally verify quantum programs.

7. In this paper ...

some advances on state spaces,
but we’ll come to that!

In contrast to the friendly
competition at Oxford: they emphasize
to axiomatize what is unique and
non-classical about quantum mechanics.



What we do in Nijmegen

1. The semantics and logic of quantum computation.

2. Focus on the common ground between the classical,
probabilistic and quantum setting (States, predicates, ...)

3. Identify relevant structure (Effect algebras, ...)

4. Organise it with category theory and formal logic.

5. Ambition: to make quantum computation more accessible to
existing methods and techniques (of categorical logic, ...)

6. On the horizon: a categorical toolkit including a type theory
to formally verify quantum programs.

7. In this paper ...

some advances on state spaces,
but we’ll come to that!



What we do in Nijmegen

1. The semantics and logic of quantum computation.

2. Focus on the common ground between the classical,
probabilistic and quantum setting (States, predicates, ...)

3. Identify relevant structure (Effect algebras, ...)

4. Organise it with category theory and formal logic.

5. Ambition: to make quantum computation more accessible to
existing methods and techniques (of categorical logic, ...)

6. On the horizon: a categorical toolkit including a type theory
to formally verify quantum programs.

7. In this paper ...

some advances on state spaces,
but we’ll come to that!



What we do in Nijmegen

1. The semantics and logic of quantum computation.

2. Focus on the common ground between the classical,
probabilistic and quantum setting (States, predicates, ...)

3. Identify relevant structure (Effect algebras, ...)

4. Organise it with category theory and formal logic.

5. Ambition: to make quantum computation more accessible to
existing methods and techniques (of categorical logic, ...)

6. On the horizon: a categorical toolkit including a type theory
to formally verify quantum programs.

7. In this paper ...

some advances on state spaces,
but we’ll come to that!



What we do in Nijmegen

1. The semantics and logic of quantum computation.

2. Focus on the common ground between the classical,
probabilistic and quantum setting (States, predicates, ...)

3. Identify relevant structure (Effect algebras, ...)

4. Organise it with category theory and formal logic.

5. Ambition: to make quantum computation more accessible to
existing methods and techniques (of categorical logic, ...)

6. On the horizon: a categorical toolkit including a type theory
to formally verify quantum programs.

7. In this paper ...

some advances on state spaces,
but we’ll come to that!



What we do in Nijmegen

1. The semantics and logic of quantum computation.

2. Focus on the common ground between the classical,
probabilistic and quantum setting (States, predicates, ...)

3. Identify relevant structure (Effect algebras, ...)

4. Organise it with category theory and formal logic.

5. Ambition: to make quantum computation more accessible to
existing methods and techniques (of categorical logic, ...)

6. On the horizon: a categorical toolkit including a type theory
to formally verify quantum programs.

7. In this paper ...

some advances on state spaces,
but we’ll come to that!



What we do in Nijmegen

1. The semantics and logic of quantum computation.

2. Focus on the common ground between the classical,
probabilistic and quantum setting (States, predicates, ...)

3. Identify relevant structure (Effect algebras, ...)

4. Organise it with category theory and formal logic.

5. Ambition: to make quantum computation more accessible to
existing methods and techniques (of categorical logic, ...)

6. On the horizon: a categorical toolkit including a type theory
to formally verify quantum programs.

7. In this paper ... some advances on state spaces

,
but we’ll come to that!



What we do in Nijmegen

1. The semantics and logic of quantum computation.

2. Focus on the common ground between the classical,
probabilistic and quantum setting (States, predicates, ...)

3. Identify relevant structure (Effect algebras, ...)

4. Organise it with category theory and formal logic.

5. Ambition: to make quantum computation more accessible to
existing methods and techniques (of categorical logic, ...)

6. On the horizon: a categorical toolkit including a type theory
to formally verify quantum programs.

7. In this paper ... some advances on state spaces,
but we’ll come to that!



Oxford & Nijmegen



Setting

Classical : Probabilistic : Quantum

Sets : K̀ (D) : vNop

sets with maps sets with von Neumann algebras

probabilistic maps with c.p. unital

normal linear maps



Setting

Classical : Probabilistic : Quantum

Sets : K̀ (D) : vNop

sets with maps sets with von Neumann algebras

probabilistic maps with c.p. unital

normal linear maps



Setting

Classical : Probabilistic : Quantum

Sets : K̀ (D) : vNop

sets with maps sets with von Neumann algebras

probabilistic maps with c.p. unital

normal linear maps



Logic?

Sets K̀ (D) vNop

classical probabilistic quantum

topos? X

7 7

CCC? X 7 7

effectus* X X X

* see next page



Logic?

Sets K̀ (D) vNop

classical probabilistic quantum

topos? X 7 7

CCC? X 7 7

effectus* X X X

* see next page



Logic?

Sets K̀ (D) vNop

classical probabilistic quantum

topos? X 7 7

CCC? X 7 7

effectus* X X X

* see next page



Logic?

Sets K̀ (D) vNop

classical probabilistic quantum

topos? X 7 7

CCC? X 7 7

effectus* X X X

* see next page



*Effectus

An effectus is a category with finite coproducts and 1 such that

I these diagrams are pullbacks:

A + X
id+g //

f +id
��

A + Y

f +id
��

B + X
id+g

// B + Y

A
id //

κ1

��

A

κ1

��
A + X

id+f
// A + Y

I these arrows are jointly monic:

X + X + X
[κ1,κ2,κ2] //

[κ2,κ1,κ2]
// X + X

(Rather weak assumptions!)



*Effectus

An effectus is a category with finite coproducts and 1 such that

I these diagrams are pullbacks:

A + X
id+g //

f +id
��

A + Y

f +id
��

B + X
id+g

// B + Y

A
id //

κ1

��

A

κ1

��
A + X

id+f
// A + Y

I these arrows are jointly monic:

X + X + X
[κ1,κ2,κ2] //

[κ2,κ1,κ2]
// X + X

(Rather weak assumptions!)



*Effectus

An effectus is a category with finite coproducts and 1 such that

I these diagrams are pullbacks:

A + X
id+g //

f +id
��

A + Y

f +id
��

B + X
id+g

// B + Y

A
id //

κ1

��

A

κ1

��
A + X

id+f
// A + Y

I these arrows are jointly monic:

X + X + X
[κ1,κ2,κ2] //

[κ2,κ1,κ2]
// X + X

(Rather weak assumptions!)



*Effectus

An effectus is a category with finite coproducts and 1 such that

I these diagrams are pullbacks:

A + X
id+g //

f +id
��

A + Y

f +id
��

B + X
id+g

// B + Y

A
id //

κ1

��

A

κ1

��
A + X

id+f
// A + Y

I these arrows are jointly monic:

X + X + X
[κ1,κ2,κ2] //

[κ2,κ1,κ2]
// X + X

(Rather weak assumptions!)



Internal logic

effectus meaning

objects types

arrows programs

1 (final object) singleton/unit type

1
ω // X state

X
p // 1 + 1 predicate

1
ω //

ω�p
22X

p // 1 + 1 validity

1
λ// 1 + 1 scalar



Internal logic

effectus meaning

objects types

arrows programs

1 (final object) singleton/unit type

1
ω // X state

X
p // 1 + 1 predicate

1
ω //

ω�p
22X

p // 1 + 1 validity

1
λ// 1 + 1 scalar



Internal logic

effectus meaning

objects types

arrows programs

1 (final object) singleton/unit type

1
ω // X

state

X
p // 1 + 1 predicate

1
ω //

ω�p
22X

p // 1 + 1 validity

1
λ// 1 + 1 scalar



Internal logic

effectus meaning

objects types

arrows programs

1 (final object) singleton/unit type

1
ω // X state

X
p // 1 + 1 predicate

1
ω //

ω�p
22X

p // 1 + 1 validity

1
λ// 1 + 1 scalar



Internal logic

effectus meaning

objects types

arrows programs

1 (final object) singleton/unit type

1
ω // X state

X
p // 1 + 1

predicate

1
ω //

ω�p
22X

p // 1 + 1 validity

1
λ// 1 + 1 scalar



Internal logic

effectus meaning

objects types

arrows programs

1 (final object) singleton/unit type

1
ω // X state

X
p // 1 + 1 predicate

1
ω //

ω�p
22X

p // 1 + 1 validity

1
λ// 1 + 1 scalar



Internal logic

effectus meaning

objects types

arrows programs

1 (final object) singleton/unit type

1
ω // X state

X
p // 1 + 1 predicate

1
ω //

ω�p
22X

p // 1 + 1 validity

1
λ// 1 + 1 scalar



Internal logic

effectus meaning

objects types

arrows programs

1 (final object) singleton/unit type

1
ω // X state

X
p // 1 + 1 predicate

1
ω //

ω�p
22X

p // 1 + 1 validity

1
λ// 1 + 1 scalar



Examples of states and predicates

State Predicate Validity Scalars

1
ω→ X X

p→ 1 + 1 ω � p 1→ 1 + 1

classical
Sets

element
ω ∈ X

subset
p ⊆ X ω ∈ p {0, 1}

probabilistic

K̀ (D)
distribution

ω ≡
∑

i si |xi 〉
fuzzy subset

X
p→ [0, 1]

∑
i sip(xi ) [0, 1]

quantum

vNop
normal state
ω : X → C

effect
0 ≤ p ≤ I ω(p) [0, 1]



Examples of states and predicates

State Predicate Validity Scalars

1
ω→ X X

p→ 1 + 1 ω � p 1→ 1 + 1

classical
Sets

element
ω ∈ X

subset
p ⊆ X ω ∈ p {0, 1}

probabilistic

K̀ (D)
distribution

ω ≡
∑

i si |xi 〉
fuzzy subset

X
p→ [0, 1]

∑
i sip(xi ) [0, 1]

quantum

vNop
normal state
ω : X → C

effect
0 ≤ p ≤ I ω(p) [0, 1]



Examples of states and predicates

State Predicate Validity Scalars

1
ω→ X X

p→ 1 + 1 ω � p 1→ 1 + 1

classical
Sets

element
ω ∈ X

subset
p ⊆ X

ω ∈ p {0, 1}
probabilistic

K̀ (D)
distribution

ω ≡
∑

i si |xi 〉
fuzzy subset

X
p→ [0, 1]

∑
i sip(xi ) [0, 1]

quantum

vNop
normal state
ω : X → C

effect
0 ≤ p ≤ I ω(p) [0, 1]



Examples of states and predicates

State Predicate Validity Scalars

1
ω→ X X

p→ 1 + 1 ω � p 1→ 1 + 1

classical
Sets

element
ω ∈ X

subset
p ⊆ X ω ∈ p {0, 1}

probabilistic

K̀ (D)
distribution

ω ≡
∑

i si |xi 〉
fuzzy subset

X
p→ [0, 1]

∑
i sip(xi ) [0, 1]

quantum

vNop
normal state
ω : X → C

effect
0 ≤ p ≤ I ω(p) [0, 1]



Examples of states and predicates

State Predicate Validity Scalars

1
ω→ X X

p→ 1 + 1 ω � p 1→ 1 + 1

classical
Sets

element
ω ∈ X

subset
p ⊆ X ω ∈ p {0, 1}

probabilistic

K̀ (D)
distribution

ω ≡
∑

i si |xi 〉

fuzzy subset

X
p→ [0, 1]

∑
i sip(xi ) [0, 1]

quantum

vNop
normal state
ω : X → C

effect
0 ≤ p ≤ I ω(p) [0, 1]



Examples of states and predicates

State Predicate Validity Scalars

1
ω→ X X

p→ 1 + 1 ω � p 1→ 1 + 1

classical
Sets

element
ω ∈ X

subset
p ⊆ X ω ∈ p {0, 1}

probabilistic

K̀ (D)
distribution

ω ≡
∑

i si |xi 〉
fuzzy subset

X
p→ [0, 1]

∑
i sip(xi ) [0, 1]

quantum

vNop
normal state
ω : X → C

effect
0 ≤ p ≤ I ω(p) [0, 1]



Examples of states and predicates

State Predicate Validity Scalars

1
ω→ X X

p→ 1 + 1 ω � p 1→ 1 + 1

classical
Sets

element
ω ∈ X

subset
p ⊆ X ω ∈ p {0, 1}

probabilistic

K̀ (D)
distribution

ω ≡
∑

i si |xi 〉
fuzzy subset

X
p→ [0, 1]

∑
i sip(xi ) [0, 1]

quantum

vNop
normal state
ω : X → C

effect
0 ≤ p ≤ I ω(p) [0, 1]



Examples of states and predicates

State Predicate Validity Scalars

1
ω→ X X

p→ 1 + 1 ω � p 1→ 1 + 1

classical
Sets

element
ω ∈ X

subset
p ⊆ X ω ∈ p {0, 1}

probabilistic

K̀ (D)
distribution

ω ≡
∑

i si |xi 〉
fuzzy subset

X
p→ [0, 1]

∑
i sip(xi ) [0, 1]

quantum

vNop
normal state
ω : X → C

effect
0 ≤ p ≤ I ω(p) [0, 1]



Examples of states and predicates

State Predicate Validity Scalars

1
ω→ X X

p→ 1 + 1 ω � p 1→ 1 + 1

classical
Sets

element
ω ∈ X

subset
p ⊆ X ω ∈ p {0, 1}

probabilistic

K̀ (D)
distribution

ω ≡
∑

i si |xi 〉
fuzzy subset

X
p→ [0, 1]

∑
i sip(xi ) [0, 1]

quantum

vNop
normal state
ω : X → C

effect
0 ≤ p ≤ I

ω(p) [0, 1]



Examples of states and predicates

State Predicate Validity Scalars

1
ω→ X X

p→ 1 + 1 ω � p 1→ 1 + 1

classical
Sets

element
ω ∈ X

subset
p ⊆ X ω ∈ p {0, 1}

probabilistic

K̀ (D)
distribution

ω ≡
∑

i si |xi 〉
fuzzy subset

X
p→ [0, 1]

∑
i sip(xi ) [0, 1]

quantum

vNop
normal state
ω : X → C

effect
0 ≤ p ≤ I ω(p) [0, 1]



Structure on states and predicates

1. Predicates on X form an effect module

over M

(≈ an ordered vector space

over M

restricted to [0, 1])

2. States on X form an convex set

over M

(= algebra for the distribution monad

over M

)

3. The scalars form an effect monoid M.

EModop
M

Stat ,,
> ConvM

Pred
ll

C
Pred

bb

Stat

==



Structure on states and predicates

1. Predicates on X form an effect module

over M

(≈ an ordered vector space

over M

restricted to [0, 1])

2. States on X form an convex set

over M

(= algebra for the distribution monad

over M

)

3. The scalars form an effect monoid M.

EModop
M

Stat ,,
> ConvM

Pred
ll

C
Pred

bb

Stat

==



Structure on states and predicates

1. Predicates on X form an effect module

over M

(≈ an ordered vector space

over M

restricted to [0, 1])

2. States on X form an convex set

over M

(= algebra for the distribution monad

over M

)

3. The scalars form an effect monoid M.

EModop
M

Stat ,,
> ConvM

Pred
ll

C
Pred

bb

Stat

==



Structure on states and predicates

1. Predicates on X form an effect module

over M

(≈ an ordered vector space

over M

restricted to [0, 1])

2. States on X form an convex set

over M

(= algebra for the distribution monad

over M

)

3. The scalars form an effect monoid M.

EModop
M

Stat ,,
> ConvM

Pred
ll

C
Pred

bb

Stat

==



Structure on states and predicates

1. Predicates on X form an effect module over M
(≈ an ordered vector space over M restricted to [0, 1])

2. States on X form an convex set over M
(= algebra for the distribution monad over M)

3. The scalars form an effect monoid M.

EModop
M

Stat ,,
> ConvM

Pred
ll

C
Pred

bb

Stat

==



Structure on states and predicates

1. Predicates on X form an effect module over M
(≈ an ordered vector space over M restricted to [0, 1])

2. States on X form an convex set over M
(= algebra for the distribution monad over M)

3. The scalars form an effect monoid M.

EModop
M

Stat ,,
> ConvM

Pred
ll

C
Pred

bb

Stat

==



Examples of operatorions on states and predicates

I Negation of predicate: X
p //

¬p
221 + 1

[κ2,κ1]// 1 + 1

I Convex combination of states 1
λ //

λω+(1−λ)%

221 + 1
[ω,%] // X

I Predicates p, q are summable whenever there is a b such that

X
p

yy

q

&&
b
��

1 + 1 1 + 1 + 1
[κ1,κ2,κ2]
oo

[κ2,κ1,κ2]
// 1 + 1

and then their sum is given by p > q = [κ1, κ1, κ2] ◦ b.



Examples of operatorions on states and predicates

I Negation of predicate: X
p //

¬p
221 + 1

[κ2,κ1]// 1 + 1

I Convex combination of states 1
λ //

λω+(1−λ)%

221 + 1
[ω,%] // X

I Predicates p, q are summable whenever there is a b such that

X
p

yy

q

&&
b
��

1 + 1 1 + 1 + 1
[κ1,κ2,κ2]
oo

[κ2,κ1,κ2]
// 1 + 1

and then their sum is given by p > q = [κ1, κ1, κ2] ◦ b.



Examples of operatorions on states and predicates

I Negation of predicate: X
p //

¬p
221 + 1

[κ2,κ1]// 1 + 1

I Convex combination of states 1
λ //

λω+(1−λ)%

221 + 1
[ω,%] // X

I Predicates p, q are summable whenever there is a b such that

X
p

yy

q

&&
b
��

1 + 1 1 + 1 + 1
[κ1,κ2,κ2]
oo

[κ2,κ1,κ2]
// 1 + 1

and then their sum is given by p > q = [κ1, κ1, κ2] ◦ b.



Two problems?

EModop
M

Stat ,,
> ConvM

Pred
ll

C
Pred

bb

Stat

==

1. EModop
M is an effectus; Pred : C→ EModop

M preserves +.

2. ConvM is not an effectus; Stat : C→ ConvM does not
always preserve coproducts.

So what? They block treating conditional probability in an effectus.



Two problems?

EModop
M

Stat ,,
> ConvM

Pred
ll

C
Pred

bb

Stat

==

1. EModop
M is an effectus; Pred : C→ EModop

M preserves +.

2. ConvM is not an effectus; Stat : C→ ConvM does not
always preserve coproducts.

So what? They block treating conditional probability in an effectus.



Two problems?

EModop
M

Stat ,,
> ConvM

Pred
ll

C
Pred

bb

Stat

==

1. EModop
M is an effectus; Pred : C→ EModop

M preserves +.

2. ConvM is not an effectus; Stat : C→ ConvM does not
always preserve coproducts.

So what? They block treating conditional probability in an effectus.



Two problems?

EModop
M

Stat ,,
> ConvM

Pred
ll

C
Pred

bb

Stat

==

1. EModop
M is an effectus; Pred : C→ EModop

M preserves +.

2. ConvM is not an effectus; Stat : C→ ConvM does not
always preserve coproducts.

So what?

They block treating conditional probability in an effectus.



Two problems?

EModop
M

Stat ,,
> ConvM

Pred
ll

C
Pred

bb

Stat

==

1. EModop
M is an effectus; Pred : C→ EModop

M preserves +.

2. ConvM is not an effectus; Stat : C→ ConvM does not
always preserve coproducts.

So what? They block treating conditional probability in an effectus.



Cancellative Convex Sets

1.
0

10

11

This is a convex set over [0, 1]
(that is, algebra for the distrubu-
tion monad over [0, 1]):

2. A convex set A is cancellative if for λ 6= 1,
λx + (1− λ)y1 = λx + (1− λ)y2 =⇒ y1 = y2.

3. Theorem For a convex set A over [0, 1] t.f.a.e.

3.1 A is cancellative;

3.2 [κ1, κ2, κ2], [κ2, κ1, κ2] : A + A + A −→ A + A
are jointly injective;

3.3 A is isomorphic to a convex subset of a real vector space.

4. The full subcategory CConv[0,1] of Conv[0,1] of cancellative
convex sets over [0, 1] is an effectus!



Cancellative Convex Sets

1.
0

10

11

This is a convex set over [0, 1]
(that is, algebra for the distrubu-
tion monad over [0, 1]):

2. A convex set A is cancellative if for λ 6= 1,
λx + (1− λ)y1 = λx + (1− λ)y2 =⇒ y1 = y2.

3. Theorem For a convex set A over [0, 1] t.f.a.e.

3.1 A is cancellative;

3.2 [κ1, κ2, κ2], [κ2, κ1, κ2] : A + A + A −→ A + A
are jointly injective;

3.3 A is isomorphic to a convex subset of a real vector space.

4. The full subcategory CConv[0,1] of Conv[0,1] of cancellative
convex sets over [0, 1] is an effectus!



Cancellative Convex Sets

1.
0

10

11

This is a convex set over [0, 1]
(that is, algebra for the distrubu-
tion monad over [0, 1]):

2. A convex set A is cancellative if for λ 6= 1,
λx + (1− λ)y1 = λx + (1− λ)y2 =⇒ y1 = y2.

3. Theorem For a convex set A over [0, 1] t.f.a.e.

3.1 A is cancellative;

3.2 [κ1, κ2, κ2], [κ2, κ1, κ2] : A + A + A −→ A + A
are jointly injective;

3.3 A is isomorphic to a convex subset of a real vector space.

4. The full subcategory CConv[0,1] of Conv[0,1] of cancellative
convex sets over [0, 1] is an effectus!



Cancellative Convex Sets

1.
0

10

11

This is a convex set over [0, 1]
(that is, algebra for the distrubu-
tion monad over [0, 1]):

2. A convex set A is cancellative if for λ 6= 1,
λx + (1− λ)y1 = λx + (1− λ)y2 =⇒ y1 = y2.

3. Theorem For a convex set A over [0, 1] t.f.a.e.

3.1 A is cancellative;

3.2 [κ1, κ2, κ2], [κ2, κ1, κ2] : A + A + A −→ A + A
are jointly injective;

3.3 A is isomorphic to a convex subset of a real vector space.

4. The full subcategory CConv[0,1] of Conv[0,1] of cancellative
convex sets over [0, 1] is an effectus!



Cancellative Convex Sets

1.
0

10

11

This is a convex set over [0, 1]
(that is, algebra for the distrubu-
tion monad over [0, 1]):

2. A convex set A is cancellative if for λ 6= 1,
λx + (1− λ)y1 = λx + (1− λ)y2 =⇒ y1 = y2.

3. Theorem For a convex set A over [0, 1] t.f.a.e.

3.1 A is cancellative;
3.2 [κ1, κ2, κ2], [κ2, κ1, κ2] : A + A + A −→ A + A

are jointly injective;

3.3 A is isomorphic to a convex subset of a real vector space.

4. The full subcategory CConv[0,1] of Conv[0,1] of cancellative
convex sets over [0, 1] is an effectus!



Cancellative Convex Sets

1.
0

10

11

This is a convex set over [0, 1]
(that is, algebra for the distrubu-
tion monad over [0, 1]):

2. A convex set A is cancellative if for λ 6= 1,
λx + (1− λ)y1 = λx + (1− λ)y2 =⇒ y1 = y2.

3. Theorem For a convex set A over [0, 1] t.f.a.e.

3.1 A is cancellative;
3.2 [κ1, κ2, κ2], [κ2, κ1, κ2] : A + A + A −→ A + A

are jointly injective;
3.3 A is isomorphic to a convex subset of a real vector space.

4. The full subcategory CConv[0,1] of Conv[0,1] of cancellative
convex sets over [0, 1] is an effectus!



Cancellative Convex Sets

1.
0

10

11

This is a convex set over [0, 1]
(that is, algebra for the distrubu-
tion monad over [0, 1]):

2. A convex set A is cancellative if for λ 6= 1,
λx + (1− λ)y1 = λx + (1− λ)y2 =⇒ y1 = y2.

3. Theorem For a convex set A over [0, 1] t.f.a.e.

3.1 A is cancellative;
3.2 [κ1, κ2, κ2], [κ2, κ1, κ2] : A + A + A −→ A + A

are jointly injective;
3.3 A is isomorphic to a convex subset of a real vector space.

4. The full subcategory CConv[0,1] of Conv[0,1] of cancellative
convex sets over [0, 1] is an effectus!



Normalisation

Stat : C −→ CConv[0,1] preserves coproducts if ...

C has normalisation:
For every 1

σ→ X + 1 with σ 6= κ2 there is a unique 1
ω→ X such

that the following diagram commutes.

1
σ //

σ
��

X + 1

X + 1
!+id

// 1 + 1

ω+id

OO



Normalisation

Stat : C −→ CConv[0,1] preserves coproducts if ...
C has normalisation:

For every 1
σ→ X + 1 with σ 6= κ2 there is a unique 1

ω→ X such
that the following diagram commutes.

1
σ //

σ
��

X + 1

X + 1
!+id

// 1 + 1

ω+id

OO



Normalisation

Stat : C −→ CConv[0,1] preserves coproducts if ...
C has normalisation:
For every 1

σ→ X + 1 with σ 6= κ2 there is a unique 1
ω→ X such

that the following diagram commutes.

1
σ //

σ
��

X + 1

X + 1
!+id

// 1 + 1

ω+id

OO



Conclusion and references

EModop
[0,1]

Stat --
> CConv[0,1]

Pred
mm

C
Pred

cc

Stat

;;

1. Every category above is an effectus;
every functor above preserves coproducts.

2. For the relation with conditional probability,
see Section 6 of the paper.

3. For more about effectuses:
Bart Jacobs, New Directions in Categorical Logic, [...],
arXiv:1205.3940v3.



Conclusion and references

EModop
[0,1]

Stat --
> CConv[0,1]

Pred
mm

C
Pred

cc

Stat

;;

1. Every category above is an effectus;
every functor above preserves coproducts.

2. For the relation with conditional probability,
see Section 6 of the paper.

3. For more about effectuses:
Bart Jacobs, New Directions in Categorical Logic, [...],
arXiv:1205.3940v3.



Conclusion and references

EModop
[0,1]

Stat --
> CConv[0,1]

Pred
mm

C
Pred

cc

Stat

;;

1. Every category above is an effectus;
every functor above preserves coproducts.

2. For the relation with conditional probability,
see Section 6 of the paper.

3. For more about effectuses:
Bart Jacobs, New Directions in Categorical Logic, [...],
arXiv:1205.3940v3.


